Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1134
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeker, Mesut-
dc.contributor.authorÖzbek, Yağmur-
dc.contributor.authorYener, Görsev-
dc.contributor.authorOzerdem, Mehmet Sirac-
dc.date.accessioned2023-06-16T12:59:06Z-
dc.date.available2023-06-16T12:59:06Z-
dc.date.issued2021-
dc.identifier.issn0169-2607-
dc.identifier.issn1872-7565-
dc.identifier.urihttps://doi.org/10.1016/j.cmpb.2021.106116-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1134-
dc.description.abstractBackground and objective: Electroencephalogram (EEG) is one of the most demanded screening tools that investigates the effects of Alzheimer's Disease (AD) on human brain. Identification of AD in early stage gives rise to efficient treatment in dementia. Mild Cognitive Impairment (MCI) is considered as a conversion stage. Reducing EEG complexity can be used as a marker to detect AD. The aim of this study is to develop a 3-way diagnostic classification using EEG complexity in the detection of MCI/AD in clinical practice. This study also investigates the effects of different eyes states, i.e. eyes-open, eyes-closed on classification performance. Methods: EEG recordings from 85 AD, 85 MCI subjects, and 85 Healthy Controls with eyes-open and eyes-closed are analyzed. Permutation Entropy (PE) values are computed from frontal, central, parietal, temporal, and occipital regions for each EEG epoch. Distribution of PE values are visualized to observe discrimination of MCI/AD with HC. Visual investigations are combined with statistical analysis using ANOVA to determine whether groups are significant or not. Multinomial Logistic Regression model is applied to feature sets in order to classify participants individually. Results: Distribution of measured PE shows that EEG complexity is lower in AD and higher in HC group. MCI group is observed as an intermediate form due to heterogeneous values. Results from 3-way classification indicate that F1-scores and rates of sensitivity and specificity achieve the highest overall discrimination rates reaching up to 100% for at TP8 for eyes-closed condition; and C3, C4, T8, O2 electrodes for eyes-open condition. Classification of HC from both patient groups is achieved best. Eyes-open state increases discrimination of MCI and AD. Conclusions: This nonlinear EEG methodology study contributes to literature with high discrimination rates for identification of AD. PE is recommended as a practical diagnostic neuro-marker for AD studies. Resting state EEG at eyes-open condition can be more advantageous over eyes-closed EEG recordings for diagnosis of AD. (c) 2021 Elsevier B.V. All rights reserved.en_US
dc.description.sponsorshipDokuz Eylul University Department of Scientific Research Projects [2018, KB.SAG.089]; Scientific and Technological Research Council of Turkey [112S459]en_US
dc.description.sponsorshipThis study was supported by Dokuz Eylul University Department of Scientific Research Projects (Project Number: 2018.KB.SAG.089) and The Scientific and Technological Research Council of Turkey (Project Number: 112S459). A sincere appropriation to Julius Bamwenda for his diligent proofreading of the manuscript.en_US
dc.language.isoenen_US
dc.publisherElsevier Ireland Ltden_US
dc.relation.ispartofComputer Methods And Programs in Bıomedıcıneen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlzheimeren_US
dc.subjectmild cognitive impairmenten_US
dc.subjectdementiaen_US
dc.subjectEEGen_US
dc.subjectentropyen_US
dc.subjectdiagnosisen_US
dc.subjectbiomarkeren_US
dc.subjectMild Cognitive Impairmenten_US
dc.subjectEyes-Openen_US
dc.subjectSignalsen_US
dc.subjectAlphaen_US
dc.subjectElectroencephalogramen_US
dc.subjectDiscriminationen_US
dc.subjectOscillationsen_US
dc.subjectMethodologyen_US
dc.subjectRegularityen_US
dc.subjectArtifactsen_US
dc.titleComplexity of EEG Dynamics for Early Diagnosis of Alzheimer's Disease Using Permutation Entropy Neuromarkeren_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cmpb.2021.106116-
dc.identifier.pmid33957376en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridOzerdem, Mehmet Sirac/0000-0002-9368-8902-
dc.authoridYener, Gorsev/0000-0002-7756-4387-
dc.authoridOzbek, Yagmur/0000-0001-9152-5707-
dc.authoridSeker, Mesut/0000-0001-9245-6790-
dc.authorwosidYener, Gorsev/AAE-4527-2020-
dc.authorwosidOzerdem, Mehmet Sirac/AAX-1187-2021-
dc.authorwosidYener, Gorsev/B-5142-2018-
dc.identifier.volume206en_US
dc.identifier.wosWOS:000663415100011en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextreserved-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
crisitem.author.dept09.03. Medicine-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
149.pdf
  Restricted Access
4.11 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

52
checked on Nov 20, 2024

Page view(s)

116
checked on Nov 25, 2024

Download(s)

8
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.