Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1142
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorİnce, Türker-
dc.contributor.authorPulkkinen, Jenni-
dc.contributor.authorGabbouj, Moncef-
dc.contributor.authorArje, Johanna-
dc.contributor.authorKarkkainen, Salme-
dc.contributor.authorTirronen, Ville-
dc.date.accessioned2023-06-16T12:59:08Z-
dc.date.available2023-06-16T12:59:08Z-
dc.date.issued2011-
dc.identifier.issn0010-4825-
dc.identifier.issn1879-0534-
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2011.04.008-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1142-
dc.description.abstractAquatic ecosystems are continuously threatened by a growing number of human induced changes. Macroinvertebrate biomonitoring is particularly efficient in pinpointing the cause-effect structure between slow and subtle changes and their detrimental consequences in aquatic ecosystems. The greatest obstacle to implementing efficient biomonitoring is currently the cost-intensive human expert taxonomic identification of samples. While there is evidence that automated recognition techniques can match human taxa identification accuracy at greatly reduced costs, so far the development of automated identification techniques for aquatic organisms has been minimal. In this paper, we focus on advancing classification and data retrieval that are instrumental when processing large macroinvertebrate image datasets. To accomplish this for routine biomonitoring, in this paper we shall investigate the feasibility of automated river macroinvertebrate classification and retrieval with high precision. Besides the state-of-the-art classifiers such as Support Vector Machines (SVMs) and Bayesian Classifiers (BCs), the focus is particularly drawn on feed-forward artificial neural networks (ANNs), namely multilayer perceptrons (MLPs) and radial basis function networks (RBFNs). Since both ANN types have been proclaimed superior by different investigations even for the same benchmark problems, we shall first show that the main reason for this ambiguity lies in the static and rather poor comparison methodologies applied in most earlier works. Especially the most common drawback occurs due to the limited evaluation of the ANN performances over just one or few network architecture(s). Therefore, in this study, an extensive evaluation of each classifier performance over an ANN architecture space is performed. The best classifier among all, which is trained over a dataset of river macroinvertebrate specimens, is then used in the MUVIS framework for the efficient search and retrieval of particular macroinvertebrate peculiars. Classification and retrieval results present high accuracy and can match an experts' ability for taxonomic identification. (C) 2011 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipAcademy of Finland (Finnish Centre of Excellence) [213462]; COMAS graduate school; STATCORE (University Alliance Finland Research Cluster of Excellence)en_US
dc.description.sponsorshipThis work was supported by the Academy of Finland, Project no. 213462 (Finnish Centre of Excellence Program (2006-2011)).; Supported by the COMAS graduate school.; Supported by the STATCORE (University Alliance Finland Research Cluster of Excellence).en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofComputers in Bıology And Medıcıneen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiomonitoringen_US
dc.subjectClassificationen_US
dc.subjectRadial basis function networksen_US
dc.subjectMultilayer perceptronsen_US
dc.subjectBayesian Networksen_US
dc.subjectSupport Vector Machinesen_US
dc.subjectBenthic macroinvertebrateen_US
dc.subjectIdentificationen_US
dc.subjectSegmentationen_US
dc.subjectFeaturesen_US
dc.titleClassification and retrieval on macroinvertebrate image databasesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.compbiomed.2011.04.008-
dc.identifier.pmid21601841en_US
dc.identifier.scopus2-s2.0-84930188483en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridArje, Johanna/0000-0003-0710-9044-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authoridRaitoharju, Jenni/0000-0003-4631-9298-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridMeissner, Kristian/0000-0001-6316-8554-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorwosidMeissner, Kristian/E-8390-2014-
dc.authorscopusid7801632948-
dc.authorscopusid56259806600-
dc.authorscopusid26665019900-
dc.authorscopusid7005332419-
dc.authorscopusid6601908750-
dc.authorscopusid56021103800-
dc.authorscopusid19639389400-
dc.identifier.volume41en_US
dc.identifier.issue7en_US
dc.identifier.startpage463en_US
dc.identifier.endpage472en_US
dc.identifier.wosWOS:000292950300006en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
158.pdf
  Restricted Access
1.47 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

34
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

31
checked on Nov 20, 2024

Page view(s)

246
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.