Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1266
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDegirmenci, M.-
dc.contributor.authorOzdemir, M. A.-
dc.contributor.authorIzci, E.-
dc.contributor.authorAkan, Aydın-
dc.date.accessioned2023-06-16T14:11:06Z-
dc.date.available2023-06-16T14:11:06Z-
dc.date.issued2022-
dc.identifier.issn1959-0318-
dc.identifier.issn1876-0988-
dc.identifier.urihttps://doi.org/10.1016/j.irbm.2021.04.002-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1266-
dc.description.abstractBackground: Electrocardiogram (ECG) is a method of recording the electrical activity of the heart and it provides a diagnostic means for heart-related diseases. Arrhythmia is any irregularity of the heartbeat that causes an abnormality in the heart rhythm. Early detection of arrhythmia has great importance to prevent many diseases. Manual analysis of ECG recordings is not practical for quickly identifying arrhythmias that may cause sudden deaths. Hence, many studies have been presented to develop computer-aided-diagnosis (CAD) systems to automatically identify arrhythmias.Methods: This paper proposes a novel deep learning approach to identify arrhythmias in ECG signals. The proposed approach identifies arrhythmia classes using Convolutional Neural Network (CNN) trained by two-dimensional (2D) ECG beat images. Firstly, ECG signals, which consist of 5 different arrhythmias, are segmented into heartbeats which are transformed into 2D grayscale images. Afterward, the images are used as input for training a new CNN architecture to classify heartbeats.Results: The experimental results show that the classification performance of the proposed approach reaches an overall accuracy of 99.7%, sensitivity of 99.7%, and specificity of 99.22% in the classification of five different ECG arrhythmias. Further, the proposed CNN architecture is compared to other popular CNN architectures such as LeNet and ResNet-50 to evaluate the performance of the study.Conclusions: Test results demonstrate that the deep network trained by ECG images provides outstanding classification performance of arrhythmic ECG signals and outperforms similar network architectures. Moreover, the proposed method has lower computational costs compared to existing methods and is more suitable for mobile device-based diagnosis systems as it does not involve any complex preprocessing process. Hence, the proposed approach provides a simple and robust automatic cardiac arrhythmia detection scheme for the classification of ECG arrhythmias.(c) 2021 AGBM. Published by Elsevier Masson SAS. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofIrbmen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArrhythmiaen_US
dc.subjectClassificationen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectElectrocardiogramen_US
dc.subjectDeep Learning Approachen_US
dc.subjectEcg Classificationen_US
dc.subjectFeature-Extractionen_US
dc.subjectSignalsen_US
dc.subjectModelen_US
dc.titleArrhythmic Heartbeat Classification Using 2D Convolutional Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.irbm.2021.04.002-
dc.identifier.scopus2-s2.0-85104982820en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridİzci, Elif/0000-0003-1148-8374-
dc.authoridOzdemir, Mehmet Akif/0000-0002-8758-113X-
dc.authoridAkan, Aydin/0000-0001-8894-5794-
dc.authorwosidİzci, Elif/GOE-6084-2022-
dc.authorwosidOzdemir, Mehmet Akif/G-7952-2018-
dc.authorscopusid57206472130-
dc.authorscopusid57206479576-
dc.authorscopusid57206467904-
dc.authorscopusid35617283100-
dc.identifier.volume43en_US
dc.identifier.issue5en_US
dc.identifier.startpage422en_US
dc.identifier.endpage433en_US
dc.identifier.wosWOS:000860611400011en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
294.pdf2.19 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

35
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

30
checked on Nov 20, 2024

Page view(s)

78
checked on Nov 18, 2024

Download(s)

22
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.