Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1301
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhani, Muhammad Usman-
dc.contributor.authorMesadi, Fitsum-
dc.contributor.authorKanik, Sumeyra Demir-
dc.contributor.authorArgunsah, Ali Oezguer-
dc.contributor.authorHobbiss, Anna Felicity-
dc.contributor.authorIsraely, Inbal-
dc.contributor.authorUnay, Devrim-
dc.date.accessioned2023-06-16T14:11:10Z-
dc.date.available2023-06-16T14:11:10Z-
dc.date.issued2017-
dc.identifier.issn0165-0270-
dc.identifier.issn1872-678X-
dc.identifier.urihttps://doi.org/10.1016/j.jneumeth.2016.12.006-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1301-
dc.description.abstractBackground: Neuronal morphology and function are highly coupled. In particular, dendritic spine morphology is strongly governed by the incoming neuronal activity. The first step towards understanding the structure-function relationships is to classify spine shapes into the main spine types suggested in the literature. Due to the lack of reliable automated analysis tools, classification is mostly performed manually, which is a time-intensive task and prone to subjectivity. New method: We propose an automated method to classify dendritic spines using shape and appearance features based on challenging two-photon laser scanning microscopy (2PLSM) data. Disjunctive Normal Shape Models (DNSM) is a recently proposed parametric shape representation. We perform segmentation of spine images by applying DNSM and use the resulting representation as shape features. Furthermore, we use Histogram of oriented gradients (HOG) to extract appearance features. In this context, we propose a kernel density estimation (KDE) based framework for dendritic spine classification, which uses these shape and appearance features. Results: Our shape and appearance features based approach combined with Neural Network (NN) correctly classifies 87.06% of spines on a dataset of 456 spines. Comparison with existing methods: Our proposed method outperforms standard morphological feature based approaches. Our KDE based framework also enables neuroscientists to analyze the separability of spine shape classes in the likelihood ratio space, which leads to further insights about nature of the spine shape analysis problem. Conclusions: Results validate that performance of our proposed approach is comparable to a human expert. It also enable neuroscientists to study shape statistics in the likelihood ratio space. (C) 2017 Elsevier B.V. All rights reserved.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [113E603]; Visiting Scientists and Scientists on Sabbatical Leave [TUBITAK-2221]; Fellowship for Postdoctoral Researchers [TUBITAK-2218]; Direct For Computer & Info Scie & Enginr; Div Of Information & Intelligent Systems [1149299] Funding Source: National Science Foundationen_US
dc.description.sponsorshipThis work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 113E603, by TUBITAK-2218 Fellowship for Postdoctoral Researchers, and by a TUBITAK-2221 Fellowship for Visiting Scientists and Scientists on Sabbatical Leave.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Neuroscıence Methodsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDendritic spinesen_US
dc.subjectClassificationen_US
dc.subjectDisjunctive Normal Shape Modelen_US
dc.subjectHistogram of oriented gradientsen_US
dc.subjectShape analysisen_US
dc.subjectKernel density estimationen_US
dc.subjectMicroscopyen_US
dc.subjectLong-Term Potentiationen_US
dc.subjectPyramidal Neuronen_US
dc.subjectPlasticityen_US
dc.subjectPriorsen_US
dc.titleDendritic spine classification using shape and appearance features based on two-photon microscopyen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jneumeth.2016.12.006-
dc.identifier.pmid27998713en_US
dc.identifier.scopus2-s2.0-85009999917en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridUnay, Devrim/0000-0003-3478-7318-
dc.authoridArgunşah, Ali Özgür/0000-0002-3082-3775-
dc.authoridGhani, Muhammad Usman/0000-0002-6411-423X-
dc.authoridDemir Kanik, Sumeyra Ummuhan/0000-0001-5976-0993-
dc.authoridHobbiss, Anna/0000-0002-9422-9273-
dc.authoridIsraely, Inbal/0000-0001-7234-6359-
dc.authoridCetin, Mujdat/0000-0002-9824-1229-
dc.authorwosidUnay, Devrim/AAE-6908-2020-
dc.authorwosidArgunşah, Ali Özgür/AAF-7464-2019-
dc.authorwosidGhani, Muhammad Usman/I-7434-2019-
dc.authorwosidUnay, Devrim/G-6002-2010-
dc.authorscopusid43561269300-
dc.authorscopusid56904289900-
dc.authorscopusid56734443000-
dc.authorscopusid24723512300-
dc.authorscopusid55642298300-
dc.authorscopusid24511960600-
dc.authorscopusid55922238900-
dc.identifier.volume279en_US
dc.identifier.startpage13en_US
dc.identifier.endpage21en_US
dc.identifier.wosWOS:000397697100002en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ3-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
334.pdf
  Restricted Access
1.13 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

31
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

30
checked on Nov 20, 2024

Page view(s)

68
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.