Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1301
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ghani, Muhammad Usman | - |
dc.contributor.author | Mesadi, Fitsum | - |
dc.contributor.author | Kanik, Sumeyra Demir | - |
dc.contributor.author | Argunsah, Ali Oezguer | - |
dc.contributor.author | Hobbiss, Anna Felicity | - |
dc.contributor.author | Israely, Inbal | - |
dc.contributor.author | Unay, Devrim | - |
dc.date.accessioned | 2023-06-16T14:11:10Z | - |
dc.date.available | 2023-06-16T14:11:10Z | - |
dc.date.issued | 2017 | - |
dc.identifier.issn | 0165-0270 | - |
dc.identifier.issn | 1872-678X | - |
dc.identifier.uri | https://doi.org/10.1016/j.jneumeth.2016.12.006 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1301 | - |
dc.description.abstract | Background: Neuronal morphology and function are highly coupled. In particular, dendritic spine morphology is strongly governed by the incoming neuronal activity. The first step towards understanding the structure-function relationships is to classify spine shapes into the main spine types suggested in the literature. Due to the lack of reliable automated analysis tools, classification is mostly performed manually, which is a time-intensive task and prone to subjectivity. New method: We propose an automated method to classify dendritic spines using shape and appearance features based on challenging two-photon laser scanning microscopy (2PLSM) data. Disjunctive Normal Shape Models (DNSM) is a recently proposed parametric shape representation. We perform segmentation of spine images by applying DNSM and use the resulting representation as shape features. Furthermore, we use Histogram of oriented gradients (HOG) to extract appearance features. In this context, we propose a kernel density estimation (KDE) based framework for dendritic spine classification, which uses these shape and appearance features. Results: Our shape and appearance features based approach combined with Neural Network (NN) correctly classifies 87.06% of spines on a dataset of 456 spines. Comparison with existing methods: Our proposed method outperforms standard morphological feature based approaches. Our KDE based framework also enables neuroscientists to analyze the separability of spine shape classes in the likelihood ratio space, which leads to further insights about nature of the spine shape analysis problem. Conclusions: Results validate that performance of our proposed approach is comparable to a human expert. It also enable neuroscientists to study shape statistics in the likelihood ratio space. (C) 2017 Elsevier B.V. All rights reserved. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) [113E603]; Visiting Scientists and Scientists on Sabbatical Leave [TUBITAK-2221]; Fellowship for Postdoctoral Researchers [TUBITAK-2218]; Direct For Computer & Info Scie & Enginr; Div Of Information & Intelligent Systems [1149299] Funding Source: National Science Foundation | en_US |
dc.description.sponsorship | This work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 113E603, by TUBITAK-2218 Fellowship for Postdoctoral Researchers, and by a TUBITAK-2221 Fellowship for Visiting Scientists and Scientists on Sabbatical Leave. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Journal of Neuroscıence Methods | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Dendritic spines | en_US |
dc.subject | Classification | en_US |
dc.subject | Disjunctive Normal Shape Model | en_US |
dc.subject | Histogram of oriented gradients | en_US |
dc.subject | Shape analysis | en_US |
dc.subject | Kernel density estimation | en_US |
dc.subject | Microscopy | en_US |
dc.subject | Long-Term Potentiation | en_US |
dc.subject | Pyramidal Neuron | en_US |
dc.subject | Plasticity | en_US |
dc.subject | Priors | en_US |
dc.title | Dendritic spine classification using shape and appearance features based on two-photon microscopy | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jneumeth.2016.12.006 | - |
dc.identifier.pmid | 27998713 | en_US |
dc.identifier.scopus | 2-s2.0-85009999917 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Unay, Devrim/0000-0003-3478-7318 | - |
dc.authorid | Argunşah, Ali Özgür/0000-0002-3082-3775 | - |
dc.authorid | Ghani, Muhammad Usman/0000-0002-6411-423X | - |
dc.authorid | Demir Kanik, Sumeyra Ummuhan/0000-0001-5976-0993 | - |
dc.authorid | Hobbiss, Anna/0000-0002-9422-9273 | - |
dc.authorid | Israely, Inbal/0000-0001-7234-6359 | - |
dc.authorid | Cetin, Mujdat/0000-0002-9824-1229 | - |
dc.authorwosid | Unay, Devrim/AAE-6908-2020 | - |
dc.authorwosid | Argunşah, Ali Özgür/AAF-7464-2019 | - |
dc.authorwosid | Ghani, Muhammad Usman/I-7434-2019 | - |
dc.authorwosid | Unay, Devrim/G-6002-2010 | - |
dc.authorscopusid | 43561269300 | - |
dc.authorscopusid | 56904289900 | - |
dc.authorscopusid | 56734443000 | - |
dc.authorscopusid | 24723512300 | - |
dc.authorscopusid | 55642298300 | - |
dc.authorscopusid | 24511960600 | - |
dc.authorscopusid | 55922238900 | - |
dc.identifier.volume | 279 | en_US |
dc.identifier.startpage | 13 | en_US |
dc.identifier.endpage | 21 | en_US |
dc.identifier.wos | WOS:000397697100002 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.identifier.wosquality | Q3 | - |
item.grantfulltext | reserved | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.02. Biomedical Engineering | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
334.pdf Restricted Access | 1.13 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
31
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
30
checked on Nov 20, 2024
Page view(s)
68
checked on Nov 18, 2024
Download(s)
4
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.