Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1337
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarac, Tugba-
dc.contributor.authorAnagun, Ahmet Sermet-
dc.contributor.authorOzcelik, Feristah-
dc.contributor.authorCelik, Pinar Aytar-
dc.contributor.authorToptas, Yagmur-
dc.contributor.authorKizilkaya, Busra-
dc.contributor.authorCabuk, Ahmet-
dc.date.accessioned2023-06-16T14:11:16Z-
dc.date.available2023-06-16T14:11:16Z-
dc.date.issued2022-
dc.identifier.issn0167-7012-
dc.identifier.issn1872-8359-
dc.identifier.urihttps://doi.org/10.1016/j.mimet.2022.106597-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1337-
dc.description.abstractIn this study, a Plackett-Burman design was applied to investigate critical factors for surface tension. After adding a new factor called production scale, a central composite design (CCD) was constructed to examine nonlinear relations among factors and surface tension. An artificial neural network (ANN) was trained using data from CCD experiments. The ANN with the best structure of 5-6-1 was then tested with different unseen data sets. The predictions from ANN were within the 95% confidence interval (CI), even for a larger production scale, deter-mined by using the replicates. A genetic algorithm (GA) was developed to check how the values of the factors vary if the production scale was set to a user-defined value. Based on the validation experiments, it was observed that the 95% confidence interval of surface tension was 36.83 +/- 1.00 mN m-1 while pH 8, temperature 35 degrees C, incubation time 12 h, and amount of inoculum 2.30%, respectively, for the production scale of 600 mL. The proposed methodological approach with the integration of ANN and GA is considered to make a serious eco-nomic contribution as it allows predicting a proper setup for larger production scales without conducting additional experiments.en_US
dc.description.sponsorshipEskisehir Osmangazi University Scientific Research Projects Coordination Unit; [201615015]en_US
dc.description.sponsorshipThis research received support from Eskisehir Osmangazi University Scientific Research Projects Coordination Unit under grant number #201615015.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Mıcrobıologıcal Methodsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSurface tensionen_US
dc.subjectBiosurfactanten_US
dc.subjectPlackett-Burman designen_US
dc.subjectArtificial neural networken_US
dc.subjectGenetic algorithmen_US
dc.subjectResponse-Surface Methodologyen_US
dc.subjectNeural-Network Annen_US
dc.subjectMedia Optimizationen_US
dc.subjectRsmen_US
dc.subjectPerformanceen_US
dc.subjectExtractionen_US
dc.titleEstimation of biosurfactant production parameters and yields without conducting additional experiments on a larger production scaleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.mimet.2022.106597-
dc.identifier.pmid36210023en_US
dc.identifier.scopus2-s2.0-85139435189en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridSaraç, Tugba/0000-0002-8115-3206-
dc.authorwosidSaraç, Tugba/J-6055-2012-
dc.authorwosidToptaş, Yağmur/R-3887-2017-
dc.authorwosidÇelik, Pınar Aytar/AAB-4913-2020-
dc.authorscopusid15072920400-
dc.authorscopusid6602816642-
dc.authorscopusid55912902400-
dc.authorscopusid57204428290-
dc.authorscopusid55858538000-
dc.authorscopusid57918081200-
dc.authorscopusid14029773600-
dc.identifier.volume202en_US
dc.identifier.wosWOS:000877555600005en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ3-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
373.pdf
  Restricted Access
1.23 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 20, 2024

Page view(s)

74
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.