Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1352
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRada, Lavdie-
dc.contributor.authorKilic, Bike-
dc.contributor.authorErdil, Ertunc-
dc.contributor.authorRamiro-Cortes, Yazmin-
dc.contributor.authorIsraely, Inbal-
dc.contributor.authorUnay, Devrim-
dc.contributor.authorCetin, Mujdat-
dc.date.accessioned2023-06-16T14:11:19Z-
dc.date.available2023-06-16T14:11:19Z-
dc.date.issued2018-
dc.identifier.issn0306-4522-
dc.identifier.issn1873-7544-
dc.identifier.urihttps://doi.org/10.1016/j.neuroscience.2018.10.022-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1352-
dc.description.abstractDetecting morphological changes of dendritic spines in tim e-lapse microscopy images and correlating them with functional properties such as memory and learning, are fundam ental and challenging problems in neurobiology research. In this paper, we propose an algorithm for dendritic spine detection in time series. The proposed approach initially performs spine detection at each time point and improves the accuracy by exploiting the information obtained from tracking of individual spines over time. To detect dendritic spines in a time point image we em ploy an SVM classifier trained by pre-labeled SIFT feature descriptors in combination with a dot enhancement filter. Second, to track the growth or loss of spines, we apply a SIFT-based rigid registration method for the alignment of tim e-series images. This step takes into account both the structure and the movement of objects, combined with a robust dynamic scheme to link inform ation about spines that disappear and reappear over time. Next, we improve spine detection by em ploying a probabilistic dynam ic program m ing approach to search for an optimum solution to accurately detect missed spines. Finally, we determine the spine location more precisely by performing a watershed-geodesic active contour model. We quantitatively assess the perform ance of the proposed spine detection algorithm based on annotations performed by biologists and com pare its perform ance with the results obtained by the noncommercial software NeuronIQ. Experiments show that our approach can accurately detect and quantify spines in 2-photon m icroscopy tim e-lapse data and is able to accurately identify spine elimination and form ation. (C) 2018 IBRO. Published by Elsevier Ltd. AM rights reserved.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey [113E603]en_US
dc.description.sponsorshipThis work was partially supported by the Scientific and Technological Research Council of Turkey through a post-doctoral research fellowship and under Grant 113E603.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofNeuroscıenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectdendritic spine detectionen_US
dc.subjectcurve evolutionen_US
dc.subjectimage processingen_US
dc.subjectlearning spine dynamicsen_US
dc.subjecttime-lapse imagesen_US
dc.subjecttrackingen_US
dc.subjectActin-Based Plasticityen_US
dc.subjectAlgorithmen_US
dc.subjectSelectionen_US
dc.titleTracking-assisted Detection of Dendritic Spines in Time-Lapse Microscopic Imagesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neuroscience.2018.10.022-
dc.identifier.pmid30347279en_US
dc.identifier.scopus2-s2.0-85056172558en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridUnay, Devrim/0000-0003-3478-7318-
dc.authoridArgunşah, Ali Özgür/0000-0002-3082-3775-
dc.authorwosidUnay, Devrim/AAE-6908-2020-
dc.authorwosidArgunşah, Ali Özgür/AAF-7464-2019-
dc.authorscopusid55268679000-
dc.authorscopusid56779763900-
dc.authorscopusid36489496900-
dc.authorscopusid26650126800-
dc.authorscopusid24511960600-
dc.authorscopusid55922238900-
dc.authorscopusid35561229800-
dc.identifier.volume394en_US
dc.identifier.startpage189en_US
dc.identifier.endpage205en_US
dc.identifier.wosWOS:000451069300016en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ3-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
390.pdf
  Restricted Access
2.81 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 20, 2024

Page view(s)

72
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.