Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1431
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ulucan, Oguzhan | - |
dc.contributor.author | Ulucan, Diclehan | - |
dc.contributor.author | Turkan, Mehmet | - |
dc.date.accessioned | 2023-06-16T14:11:36Z | - |
dc.date.available | 2023-06-16T14:11:36Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0165-1684 | - |
dc.identifier.issn | 1872-7557 | - |
dc.identifier.uri | https://doi.org/10.1016/j.sigpro.2022.108774 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1431 | - |
dc.description.abstract | The visual system enables humans to perceive all details of the real-world with vivid colors, while high dynamic range (HDR) technology aims at capturing natural scenes in a closer way to human perception through a large dynamic range of color gamut. Especially for traditional -low dynamic range (LDR)- de-vices, HDR-like image generation is an attractive research topic. Blending a stack of input LDR exposures is called multi-exposure image fusion (MEF). MEF is indeed a very challenging problem and it is highly prone to halo effects or ghosting and motion blur in the cases when there are spatial discontinuities in between input exposures. To overcome these artifacts, MEF keeps the best quality regions of each exposure via a weight characterization scheme. This paper proposes an effective weight map extraction framework which relies on principal component analysis, adaptive well-exposedness and saliency maps. The characterized maps are later refined by a guided filter and a blended output image is obtained via pyramidal decomposition. Comprehensive experiments and comparisons demonstrate that the developed algorithm generates very strong statistical and visual results for both static and dynamic scenes. In ad-dition, the designed method is successfully applied to the visible-infrared image fusion problem without any further optimization.(c) 2022 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Sıgnal Processıng | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | High dynamic range | en_US |
dc.subject | Multi -exposure image fusion | en_US |
dc.subject | Principal component analysis | en_US |
dc.subject | Saliency map | en_US |
dc.subject | Well -exposedness | en_US |
dc.subject | Quality Assessment | en_US |
dc.title | Ghosting-free multi-exposure image fusion for static and dynamic scenes | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.sigpro.2022.108774 | - |
dc.identifier.scopus | 2-s2.0-85138033973 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Ulucan, Oguzhan/0000-0003-2077-9691 | - |
dc.authorid | Turkan, Mehmet/0000-0002-9780-9249 | - |
dc.authorwosid | Ulucan, Oguzhan/AAY-8794-2020 | - |
dc.authorwosid | Turkan, Mehmet/AGQ-8084-2022 | - |
dc.authorscopusid | 57212583565 | - |
dc.authorscopusid | 57891531000 | - |
dc.authorscopusid | 57219464964 | - |
dc.identifier.volume | 202 | en_US |
dc.identifier.wos | WOS:000862589400003 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q2 | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
21
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
15
checked on Nov 20, 2024
Page view(s)
74
checked on Nov 25, 2024
Download(s)
44
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.