Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1514
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kiranyaz, Serkan | - |
dc.contributor.author | İnce, Türker | - |
dc.contributor.author | Gabbouj, Moncef | - |
dc.date.accessioned | 2023-06-16T14:18:38Z | - |
dc.date.available | 2023-06-16T14:18:38Z | - |
dc.date.issued | 2017 | - |
dc.identifier.issn | 2045-2322 | - |
dc.identifier.uri | https://doi.org/10.1038/s41598-017-09544-z | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1514 | - |
dc.description.abstract | Each year more than 7 million people die from cardiac arrhythmias. Yet no robust solution exists today to detect such heart anomalies right at the moment they occur. The purpose of this study was to design a personalized health monitoring system that can detect early occurrences of arrhythmias from an individual's electrocardiogram (ECG) signal. We first modelled the common causes of arrhythmias in the signal domain as a degradation of normal ECG beats to abnormal beats. Using the degradation models, we performed abnormal beat synthesis which created potential abnormal beats from the average normal beat of the individual. Finally, a Convolutional Neural Network (CNN) was trained using real normal and synthesized abnormal beats. As a personalized classifier, the trained CNN can monitor ECG beats in real time for arrhythmia detection. Over 34 patients' ECG records with a total of 63,341 ECG beats from the MIT-BIH arrhythmia benchmark database, we have shown that the probability of detecting one or more abnormal ECG beats among the first three occurrences is higher than 99.4% with a very low false-alarm rate. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Nature Portfolio | en_US |
dc.relation.ispartof | Scıentıfıc Reports | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Ecg Morphology | en_US |
dc.subject | Classification | en_US |
dc.title | Personalized Monitoring and Advance Warning System for Cardiac Arrhythmias | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1038/s41598-017-09544-z | - |
dc.identifier.pmid | 28839215 | en_US |
dc.identifier.scopus | 2-s2.0-85028043328 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Gabbouj, Moncef/0000-0002-9788-2323 | - |
dc.authorid | İnce, Türker/0000-0002-8495-8958 | - |
dc.authorid | kiranyaz, serkan/0000-0003-1551-3397 | - |
dc.authorwosid | Kiranyaz, Serkan/AAK-1416-2021 | - |
dc.authorwosid | Gabbouj, Moncef/G-4293-2014 | - |
dc.authorscopusid | 7801632948 | - |
dc.authorscopusid | 56259806600 | - |
dc.authorscopusid | 7005332419 | - |
dc.identifier.volume | 7 | en_US |
dc.identifier.wos | WOS:000408440800005 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q2 | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
95
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
71
checked on Nov 20, 2024
Page view(s)
232
checked on Nov 18, 2024
Download(s)
18
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.