Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1574
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrestwich, S. D.-
dc.contributor.authorTarim, S. A.-
dc.contributor.authorRossi, R.-
dc.contributor.authorHnich, B.-
dc.date.accessioned2023-06-16T14:18:47Z-
dc.date.available2023-06-16T14:18:47Z-
dc.date.issued2012-
dc.identifier.issn0020-7543-
dc.identifier.urihttps://doi.org/10.1080/00207543.2011.574503-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1574-
dc.description.abstractStochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve larger instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose instead a neuroevolutionary approach: using an artificial neural network to compactly represent the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find high-quality plans using networks of a very simple form.en_US
dc.description.sponsorshipScience Foundation Ireland [05/IN/I886]; Scientific and Technological Research Council of Turkey (TUBITAK) [1001]; European Community [244994]en_US
dc.description.sponsorshipThis material is based, in part, upon works supported by the Science Foundation Ireland under grant No. 05/IN/I886. B. Hnich and S.A. Tarim are supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the Support Programme-1001. Roberto Rossi has received funding from the European Community's Seventh Framework Programme (FP7) under grant agreement No. 244994 (project VEG-i-TRADE).en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofInternatıonal Journal of Productıon Researchen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectinventory controlen_US
dc.subjectneural networksen_US
dc.subjectevolutionary algorithmsen_US
dc.subjectneuroevolutionen_US
dc.subjectmulti-echelon systemsen_US
dc.subjectNoisy Genetic Algorithmen_US
dc.subjectSupply Chainsen_US
dc.subjectEnvironmentsen_US
dc.subjectOptimizationen_US
dc.subjectUncertaintyen_US
dc.subjectManagementen_US
dc.subjectDesignen_US
dc.subjectModelen_US
dc.titleA Neuroevolutionary Approach To Stochastic Inventory Control in Multi-Echelon Systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00207543.2011.574503-
dc.identifier.scopus2-s2.0-84861392860-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridTarim, S. Armagan/0000-0001-5601-3968-
dc.authoridRossi, Roberto/0000-0001-7247-1010-
dc.authoridPrestwich, Steven/0000-0002-6218-9158-
dc.authoridHnich, Brahim/0000-0001-8875-8390-
dc.authorwosidTarim, S. Armagan/B-4414-2010-
dc.authorwosidRossi, Roberto/B-4397-2010-
dc.authorscopusid7004234709-
dc.authorscopusid6506794189-
dc.authorscopusid35563636800-
dc.authorscopusid6602458958-
dc.identifier.volume50en_US
dc.identifier.issue8en_US
dc.identifier.startpage2150en_US
dc.identifier.endpage2160en_US
dc.identifier.wosWOS:000304343200005-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.openairetypeArticle-
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1574.pdf260.57 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Apr 2, 2025

WEB OF SCIENCETM
Citations

7
checked on Apr 2, 2025

Page view(s)

78
checked on Mar 31, 2025

Download(s)

8
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.