Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1575
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrestwich, Steven-
dc.contributor.authorRossi, Roberto-
dc.contributor.authorTarim, S. Armagan-
dc.contributor.authorHnich B.-
dc.date.accessioned2023-06-16T14:18:47Z-
dc.date.available2023-06-16T14:18:47Z-
dc.date.issued2014-
dc.identifier.issn0020-7543-
dc.identifier.issn1366-588X-
dc.identifier.urihttps://doi.org/10.1080/00207543.2014.917771-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1575-
dc.description.abstractTo compare different forecasting methods on demand series, we require an error measure. Many error measures have been proposed, but when demand is intermittent some become inapplicable because of infinities, some give counter-intuitive results, and there is no agreement on which is best. We argue that almost all known measures rank forecasters incorrectly on intermittent demand series. We propose several new error measures with almost no infinities, and with correct forecaster ranking on several intermittent demand patterns. We call these mean-based' error measures because they evaluate forecasts against the (possibly time-dependent) mean of the underlying stochastic process instead of point demands.en_US
dc.description.sponsorshipEnterprise Ireland Innovation Voucher [IV-2009-2092]; Scientific and Technological Research Council of Turkey (TUBITAK) [110M500]; University of Edinburgh CHSS Challenge Investment Fund; European Community [244994]en_US
dc.description.sponsorshipThis work was partially funded by Enterprise Ireland Innovation Voucher IV-2009-2092. S. Armagan Tarim is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under [grant number 110M500]. R. Rossi is supported by the University of Edinburgh CHSS Challenge Investment Fund and by the European Community's Seventh Framework Programme (FP7) under [grant number 244994] (project VEG-i-TRADE).en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofInternatıonal Journal of Productıon Researchen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectforecastingen_US
dc.subjectintermittent demanden_US
dc.subjecterror measureen_US
dc.subjectStock Controlen_US
dc.subjectAccuracyen_US
dc.titleMean-based error measures for intermittent demand forecastingen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00207543.2014.917771-
dc.identifier.scopus2-s2.0-84908244513en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridTarim, S. Armagan/0000-0001-5601-3968-
dc.authoridRossi, Roberto/0000-0001-7247-1010-
dc.authoridPrestwich, Steven/0000-0002-6218-9158-
dc.authoridHnich, Brahim/0000-0001-8875-8390-
dc.authorwosidTarim, S. Armagan/B-4414-2010-
dc.authorwosidRossi, Roberto/B-4397-2010-
dc.authorscopusid7004234709-
dc.authorscopusid35563636800-
dc.authorscopusid6506794189-
dc.authorscopusid6602458958-
dc.identifier.volume52en_US
dc.identifier.issue22en_US
dc.identifier.startpage6782en_US
dc.identifier.endpage6791en_US
dc.identifier.wosWOS:000343419100014en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1575.pdf433.72 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

46
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

41
checked on Nov 20, 2024

Page view(s)

90
checked on Nov 18, 2024

Download(s)

10
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.