Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1646
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOguz, Kaya-
dc.contributor.authorBor Türkben, Aslı-
dc.date.accessioned2023-06-16T14:19:00Z-
dc.date.available2023-06-16T14:19:00Z-
dc.date.issued2022-
dc.identifier.issn0883-9514-
dc.identifier.issn1087-6545-
dc.identifier.urihttps://doi.org/10.1080/08839514.2021.2001734-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1646-
dc.description.abstractThe physics of local scour around bridge piers is fairly complex because of multiple forces acting on it. Existing empirical formulas cannot cover all scenarios and soft computing methods require ever greater amounts of data to cover all cases with a single formula or a neural network. The approach proposed in this study brings together observations from over 40 studies, grouping similar observations with hierarchical clustering, and using genetic programming with adaptive operators to evolve formulas specific to each cluster to predict the scour depth. The resulting formulas are made available along with a basic web-based user interface that finds the closest cluster for newly presented data and finds the scour depth using the formula for that cluster. All formulas have R-2 scores over 0.8 and have been validated with validation and testing sets to reduce overfitting. When compared to existing empirical formulas, the generated formulas consistently record higher R-2 scores.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofApplıed Artıfıcıal Intellıgenceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClear-Water Scouren_US
dc.subjectNeural-Networksen_US
dc.subjectDepthen_US
dc.subjectScaleen_US
dc.titlePrediction of Local Scour around Bridge Piers Using Hierarchical Clustering and Adaptive Genetic Programmingen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/08839514.2021.2001734-
dc.identifier.scopus2-s2.0-85121681591en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridTURKBEN, Asli BOR/0000-0002-1679-5130-
dc.authoridOguz, Kaya/0000-0002-1860-9127-
dc.authoridBOR, Asli/0000-0002-1679-5130-
dc.authorwosidTURKBEN, Asli BOR/F-2987-2015-
dc.authorwosidOguz, Kaya/A-1812-2016-
dc.authorwosidBOR, Asli/AAE-1433-2022-
dc.authorscopusid54902980200-
dc.authorscopusid57203956151-
dc.identifier.volume36en_US
dc.identifier.issue1en_US
dc.identifier.wosWOS:000732582600001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
crisitem.author.dept05.05. Computer Engineering-
crisitem.author.dept05.03. Civil Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1646.pdf2.15 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 20, 2024

Page view(s)

90
checked on Nov 18, 2024

Download(s)

16
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.