Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1925
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUnay, Devrim-
dc.contributor.authorStanciu, Stefan G.-
dc.date.accessioned2023-06-16T14:25:20Z-
dc.date.available2023-06-16T14:25:20Z-
dc.date.issued2018-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2018.2855264-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1925-
dc.description.abstractLaser scanning microscopy (LSM) techniques are of paramount importance at this time for key domains such as biology, medicine, or materials science. Computer vision methods are instrumental for boosting the potential of LSM, providing reliable results for important tasks, such as image segmentation, registration, classification, or retrieval in a fraction of the time that a human expert would require (at similar or even higher accuracy levels). Image keypoint extraction and description represent essential building blocks of modern computer vision approaches, and the development of such techniques has gained massive interest over the past couple of decades. In this paper, we compare side-by-side five popular keypoint description techniques, scale invariant feature transform (SIFT), speeded-up robust features (SURF), binary robust invariant scalable keypoints (BRISK), fast retina keypoint (FREAK) and BLOCK, with respect to their capacity to represent in a reproducible manner image regions contained in LSM data sets acquired under different acquisition conditions. We evaluate this capacity in terms of descriptor matching performance, using data sets acquired in a principled manner and a thorough Precision-Recall analysis. We identify which of the five evaluated techniques is most robust to specific LSM image modifications associated to the laser beam power, photomultiplier gain, or pixel dwell, and show that certain pre-processing steps have the potential to enhance keypoint matching.en_US
dc.description.sponsorshipShort Term Scientific Mission of the EU COST Action [CA15124 NEUBIAS]; Scientific and Technological Research Council of Turkey [113E603]; Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding [PN-III-P2-2.1-PED-2016-1252, PN-III-P2-2.1-PED-2016-0450]en_US
dc.description.sponsorshipThis work was supported in part by a Short Term Scientific Mission of the EU COST Action CA15124 NEUBIAS, in part by the Scientific and Technological Research Council of Turkey under Grant 113E603, and in part by the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding under Grant PN-III-P2-2.1-PED-2016-1252 and Grant PN-III-P2-2.1-PED-2016-0450.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Accessen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectKeypoint descriptorsen_US
dc.subjectlaser scanning microscopyen_US
dc.subjectscale invariant feature transform (SIFT)en_US
dc.subjectspeeded-up robust features (SURF)en_US
dc.subjectbinary robust invariant scalable keypoints (BRISK)en_US
dc.subjectfast retina keypoint (FREAK)en_US
dc.subjectBLOCKen_US
dc.subject2nd-Harmonic Generation Microscopyen_US
dc.subjectLiver Fibrosisen_US
dc.subjectFeaturesen_US
dc.subjectCellen_US
dc.subjectFluorescenceen_US
dc.subjectClassificationen_US
dc.subjectEmissionen_US
dc.subjectVisionen_US
dc.titleAn Evaluation on the Robustness of Five Popular Keypoint Descriptors to Image Modifications Specific to Laser Scanning Microscopyen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2018.2855264-
dc.identifier.scopus2-s2.0-85049950947en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridStanciu, Stefan G./0000-0002-1676-3040-
dc.authoridUnay, Devrim/0000-0003-3478-7318-
dc.authorwosidStanciu, Stefan G./AAJ-5568-2020-
dc.authorwosidUnay, Devrim/AAE-6908-2020-
dc.authorwosidUnay, Devrim/G-6002-2010-
dc.authorscopusid55922238900-
dc.authorscopusid12797768000-
dc.identifier.volume6en_US
dc.identifier.startpage40154en_US
dc.identifier.endpage40164en_US
dc.identifier.wosWOS:000441030400001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1925.pdf1.61 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 20, 2024

Page view(s)

68
checked on Nov 18, 2024

Download(s)

40
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.