Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1940
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarakaya, Diclehan-
dc.contributor.authorUlucan, Oguzhan-
dc.contributor.authorTurkan, Mehmet-
dc.date.accessioned2023-06-16T14:25:24Z-
dc.date.available2023-06-16T14:25:24Z-
dc.date.issued2022-
dc.identifier.isbn978-1-6654-0540-9-
dc.identifier.issn1520-6149-
dc.identifier.urihttps://doi.org/10.1109/ICASSP43922.2022.9746779-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1940-
dc.description47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) -- MAY 22-27, 2022 -- Singapore, SINGAPOREen_US
dc.description.abstractHigh dynamic range (HDR) imaging enables to immortalize natural scenes similar to the way that they are perceived by human observers. With regular low dynamic range (LDR) capture/display devices, significant details may not be preserved in images due to the huge dynamic range of natural scenes. To minimize the information loss and produce high quality HDR-like images for LDR screens, this study proposes an efficient multi-exposure fusion (MEF) approach with a simple yet effective weight extraction method relying on principal component analysis, adaptive well-exposedness and saliency maps. These weight maps are later refined through a guided filter and the fusion is carried out by employing a pyramidal decomposition. Experimental comparisons with existing techniques demonstrate that the proposed method produces very strong statistical and visual results.en_US
dc.description.sponsorshipInst Elect & Elect Engineers,Inst Elect & Elect Engineers Signal Proc Socen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2022 Ieee Internatıonal Conference on Acoustıcs, Speech And Sıgnal Processıng (Icassp)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHigh dynamic rangeen_US
dc.subjectmulti-exposure image fusionen_US
dc.subjectprincipal component analysisen_US
dc.subjectsaliency mapen_US
dc.subjectguided filteringen_US
dc.titlePAS-MEF: MULTI-EXPOSURE IMAGE FUSION BASED ON PRINCIPAL COMPONENT ANALYSIS, ADAPTIVE WELL-EXPOSEDNESS AND SALIENCY MAPen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ICASSP43922.2022.9746779-
dc.identifier.scopus2-s2.0-85131252300en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridUlucan, Oguzhan/0000-0003-2077-9691-
dc.authorwosidUlucan, Oguzhan/AAY-8794-2020-
dc.authorscopusid57212583921-
dc.authorscopusid57212583565-
dc.authorscopusid57219464964-
dc.identifier.startpage2345en_US
dc.identifier.endpage2349en_US
dc.identifier.wosWOS:000864187902124en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1940.pdf8.4 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

18
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

12
checked on Nov 20, 2024

Page view(s)

62
checked on Nov 18, 2024

Download(s)

24
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.