Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1953
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:25:27Z-
dc.date.available2023-06-16T14:25:27Z-
dc.date.issued2008-
dc.identifier.isbn978-1-4244-1814-5-
dc.identifier.issn1557-170X-
dc.identifier.urihttps://doi.org/10.1109/IEMBS.2008.4650453-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1953-
dc.description30th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society -- AUG 20-24, 2008 -- Vancouver, CANADAen_US
dc.description.abstractIn this paper, we present an automated patient-specific electrocardiogram (ECG) beat classifier designed or accurate defection of premature ventricular contractions (PVCs). In the proposed feature extraction scheme, the principal component analysis (PCA) is applied to the dyadic wavelet transform (DWT) of the ECG signal to extract morphological ECG features, which are then combined with the temporal features to form a resultant efficient feature vector. For the classification scheme, we selected the feed-forward artificial neural networks (ANNs) optimally designed by the multi-dimensional particle swarm optimization (MD-PSO) technique, which evolves the structure and weights of the network specifically for each patient. Training data for the ANN classifier include both global (total of 150 representative beats randomly sampled from each class in selected training files) and local (the first 5 min of a patient's ECG recording) training patterns. Simulation results using 40 files in the MIT/BIH arrhythmia database achieved high average accuracy of 97% for differentiating normal, PVC, and other beats.en_US
dc.description.sponsorshipDEVICIX,Green Coll,Natl Inst Hlth,NIBIB,NSF,PLEXON Inc,UBC Engn Biomed Engn,Univ Washington, Coll Engn,Bentham Sci Publ Ltd,Recent Patents Biomed Engn,Recent Patents Engnen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2008 30Th Annual Internatıonal Conference of the Ieee Engıneerıng in Medıcıne And Bıology Socıety, Vols 1-8en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectWavelet Transformen_US
dc.subjectNeural-Networken_US
dc.subjectEcgen_US
dc.titleAutomated patient-specific classification of premature ventricular contractionsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/IEMBS.2008.4650453-
dc.identifier.pmid19163956en_US
dc.identifier.scopus2-s2.0-61849161123en_US
dc.identifier.scopus2-s2.0-84903801554en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorscopusid56259806600-
dc.authorscopusid7801632948-
dc.authorscopusid7005332419-
dc.identifier.startpage5474en_US
dc.identifier.endpage+en_US
dc.identifier.wosWOS:000262404503169en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1953.pdf
  Restricted Access
219.84 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

20
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

17
checked on Nov 20, 2024

Page view(s)

240
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.