Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1972
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:31:05Z-
dc.date.available2023-06-16T14:31:05Z-
dc.date.issued2009-
dc.identifier.issn0018-9294-
dc.identifier.issn1558-2531-
dc.identifier.urihttps://doi.org/10.1109/TBME.2009.2013934-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1972-
dc.description.abstractThis paper presents a generic and patient-specific classification system designed for robust and accurate detection of ECG heartbeat patterns. The proposed feature extraction process utilizes morphological wavelet transform features, which are projected onto a lower dimensional feature space using principal component analysis, and temporal features from the ECG data. For the pattern recognition unit, feedforward and fully connected artificial neural networks, which are optimally designed for each patient by the proposed multidimensional particle swarm optimization technique, are employed. By using relatively small common and patient-specific training data, the proposed classification system can adapt to significant interpatient variations in ECG patterns by training the optimal network structure, and thus, achieves higher accuracy over larger datasets. The classification experiments over a benchmark database demonstrate that the proposed system achieves such average accuracies and sensitivities better than most of the current state-of-the-art algorithms for detection of ventricular ectopic beats (VEBs) and supra-VEBs (SVEBs). Over the entire database, the average accuracy-sensitivity performances of the proposed system for VEB and SVEB detections are 98.3%-84.6% and 97.4%-63.5%, respectively. Finally, due to its parameter-invariant nature, the proposed system is highly generic, and thus, applicable to any ECG dataset.en_US
dc.description.sponsorshipAcademy of Finland [213462]en_US
dc.description.sponsorshipThis work was supported by the Academy of Finland under Project 213462 [Finnish Centre of Excellence Program (2006-2011)].en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Bıomedıcal Engıneerıngen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiomedical signal classificationen_US
dc.subjectevolutionary neural networksen_US
dc.subjectmultidimensional (MD) searchen_US
dc.subjectparticle swarm optimization (PSO)en_US
dc.subjectWavelet Transformen_US
dc.subjectNeural-Networksen_US
dc.subjectMorphologyen_US
dc.titleA Generic and Robust System for Automated Patient-Specific Classification of ECG Signalsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TBME.2009.2013934-
dc.identifier.pmid19203885en_US
dc.identifier.scopus2-s2.0-67649208265en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorscopusid56259806600-
dc.authorscopusid7801632948-
dc.authorscopusid7005332419-
dc.identifier.volume56en_US
dc.identifier.issue5en_US
dc.identifier.startpage1415en_US
dc.identifier.endpage1426en_US
dc.identifier.wosWOS:000266676300015en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1972.pdf
  Restricted Access
1.04 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

424
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

331
checked on Nov 20, 2024

Page view(s)

254
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.