Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1973
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:31:05Z-
dc.date.available2023-06-16T14:31:05Z-
dc.date.issued2016-
dc.identifier.issn0018-9294-
dc.identifier.issn1558-2531-
dc.identifier.urihttps://doi.org/10.1109/TBME.2015.2468589-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1973-
dc.description.abstractGoal: This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. Methods: An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. Results: The results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats. Conclusion: Besides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner. Significance: Due to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Bıomedıcal Engıneerıngen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional neural networks (CNNs)en_US
dc.subjectpatient-specific ECG classificationen_US
dc.subjectreal-time heart monitoringen_US
dc.subjectHeartbeaten_US
dc.subjectMorphologyen_US
dc.titleReal-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TBME.2015.2468589-
dc.identifier.pmid26285054en_US
dc.identifier.scopus2-s2.0-84962128752en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorscopusid7801632948-
dc.authorscopusid56259806600-
dc.authorscopusid7005332419-
dc.identifier.volume63en_US
dc.identifier.issue3en_US
dc.identifier.startpage664en_US
dc.identifier.endpage675en_US
dc.identifier.wosWOS:000371933800022en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1973.pdf
  Restricted Access
834.18 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1,424
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1,123
checked on Nov 20, 2024

Page view(s)

214
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.