Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1973
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kiranyaz, Serkan | - |
dc.contributor.author | İnce, Türker | - |
dc.contributor.author | Gabbouj, Moncef | - |
dc.date.accessioned | 2023-06-16T14:31:05Z | - |
dc.date.available | 2023-06-16T14:31:05Z | - |
dc.date.issued | 2016 | - |
dc.identifier.issn | 0018-9294 | - |
dc.identifier.issn | 1558-2531 | - |
dc.identifier.uri | https://doi.org/10.1109/TBME.2015.2468589 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1973 | - |
dc.description.abstract | Goal: This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. Methods: An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. Results: The results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats. Conclusion: Besides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner. Significance: Due to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | Ieee Transactıons on Bıomedıcal Engıneerıng | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Convolutional neural networks (CNNs) | en_US |
dc.subject | patient-specific ECG classification | en_US |
dc.subject | real-time heart monitoring | en_US |
dc.subject | Heartbeat | en_US |
dc.subject | Morphology | en_US |
dc.title | Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/TBME.2015.2468589 | - |
dc.identifier.pmid | 26285054 | en_US |
dc.identifier.scopus | 2-s2.0-84962128752 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Gabbouj, Moncef/0000-0002-9788-2323 | - |
dc.authorid | İnce, Türker/0000-0002-8495-8958 | - |
dc.authorid | kiranyaz, serkan/0000-0003-1551-3397 | - |
dc.authorwosid | Kiranyaz, Serkan/AAK-1416-2021 | - |
dc.authorwosid | Gabbouj, Moncef/G-4293-2014 | - |
dc.authorscopusid | 7801632948 | - |
dc.authorscopusid | 56259806600 | - |
dc.authorscopusid | 7005332419 | - |
dc.identifier.volume | 63 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 664 | en_US |
dc.identifier.endpage | 675 | en_US |
dc.identifier.wos | WOS:000371933800022 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q2 | - |
item.grantfulltext | reserved | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1973.pdf Restricted Access | 834.18 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
1,424
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
1,123
checked on Nov 20, 2024
Page view(s)
214
checked on Nov 18, 2024
Download(s)
2
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.