Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1975
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZahid, Muhammad Uzair-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorİnce, Türker-
dc.contributor.authorDevecioglu, Ozer Can-
dc.contributor.authorChowdhury, Muhammad E. H.-
dc.contributor.authorKhandakar, Amith-
dc.contributor.authorTahir, Anas-
dc.date.accessioned2023-06-16T14:31:05Z-
dc.date.available2023-06-16T14:31:05Z-
dc.date.issued2022-
dc.identifier.issn0018-9294-
dc.identifier.issn1558-2531-
dc.identifier.urihttps://doi.org/10.1109/TBME.2021.3088218-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1975-
dc.description.abstractObjective: Noise and low quality of ECG signals acquired from Holter or wearable devices deteriorate the accuracy and robustness of R-peak detection algorithms. This paper presents a generic and robust system for R-peak detection in Holter ECG signals. While many proposed algorithms have successfully addressed the problem of ECG R-peak detection, there is still a notable gap in the performance of these detectors on such low-quality ECG records. Methods: In this study, a novel implementation of the 1D Convolutional Neural Network (CNN) is used integrated with a verification model to reduce the number of false alarms. This CNN architecture consists of an encoder block and a corresponding decoder block followed by a sample-wise classification layer to construct the 1D segmentation map of R-peaks from the input ECG signal. Once the proposed model has been trained, it can solely be used to detect R-peaks possibly in a single channel ECG data stream quickly and accurately, or alternatively, such a solution can be conveniently employed for real-time monitoring on a lightweight portable device. Results: The model is tested on two open-access ECG databases: The China Physiological Signal Challenge (2020) database (CPSC-DB) with more than one million beats, and the commonly used MIT-BIH Arrhythmia Database (MIT-DB). Experimental results demonstrate that the proposed systematic approach achieves 99.30% F1-score, 99.69% recall, and 98.91% precision in CPSC-DB, which is the best R-peak detection performance ever achieved. Results also demonstrate similar or better performance than most competing algorithms on MIT-DB with 99.83% F1-score, 99.85% recall, and 99.82% precision. Significance: Compared to all competing methods, the proposed approach can reduce the false-positives and false-negatives in Holter ECG signals by more than 54% and 82%, respectively. Conclusion: Finally, the simple and invariant nature of the parameters leads to a highly generic system and therefore applicable to any ECG dataset.en_US
dc.description.sponsorshipQatar National Research Fund [NPRP11S-0108-180228]; Academy of Finland under Project AWcHAen_US
dc.description.sponsorshipThis work was supported in part by Qatar National Research Fund, project under Grant NPRP11S-0108-180228 and in part by the Academy of Finland under Project AWcHA.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Bıomedıcal Engıneerıngen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectElectrocardiographyen_US
dc.subjectSensitivityen_US
dc.subjectPerformance evaluationen_US
dc.subjectMonitoringen_US
dc.subjectBenchmark testingen_US
dc.subjectNoise measurementen_US
dc.subjectElectronic mailen_US
dc.subject1D convolutional neural networken_US
dc.subjectR-peak detectionen_US
dc.subjectECG monitoringen_US
dc.subjectholter registersen_US
dc.subjectQrsen_US
dc.subjectClassificationen_US
dc.subjectTransformen_US
dc.subjectAnnen_US
dc.titleRobust R-Peak Detection in Low-Quality Holter ECGs Using 1D Convolutional Neural Networken_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TBME.2021.3088218-
dc.identifier.pmid34110986en_US
dc.identifier.scopus2-s2.0-85111016577en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridChowdhury, Muhammad E.H./0000-0003-0744-8206-
dc.authoridZahid, Muhammad Uzair/0000-0002-0515-3394-
dc.authoridTahir, Anas/0000-0001-5018-0626-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridKhandakar, Amith/0000-0001-7068-9112-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidChowdhury, Muhammad E.H./J-6916-2019-
dc.authorscopusid57226275010-
dc.authorscopusid7801632948-
dc.authorscopusid56259806600-
dc.authorscopusid57215653815-
dc.authorscopusid8964151000-
dc.authorscopusid36053012700-
dc.authorscopusid57203064661-
dc.identifier.volume69en_US
dc.identifier.issue1en_US
dc.identifier.startpage119en_US
dc.identifier.endpage128en_US
dc.identifier.wosWOS:000733943200017en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1975.pdf3.27 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

48
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

31
checked on Nov 20, 2024

Page view(s)

248
checked on Nov 18, 2024

Download(s)

30
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.