Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1978
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorDevecioglu, Ozer Can-
dc.contributor.authorİnce, Türker-
dc.contributor.authorMalik, Junaid-
dc.contributor.authorChowdhury, Muhammad-
dc.contributor.authorHamid, Tahir-
dc.contributor.authorMazhar, Rashid-
dc.date.accessioned2023-06-16T14:31:06Z-
dc.date.available2023-06-16T14:31:06Z-
dc.date.issued2022-
dc.identifier.issn0018-9294-
dc.identifier.issn1558-2531-
dc.identifier.urihttps://doi.org/10.1109/TBME.2022.3172125-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1978-
dc.description.abstractObjective: ECG recordings often suffer from a set of artifacts with varying types, severities, and durations, and this makes an accurate diagnosis by machines or medical doctors difficult and unreliable. Numerous studies have proposed ECG denoising; however, they naturally fail to restore the actual ECG signal corrupted with such artifacts due to their simple and naive noise model. In this pilot study, we propose a novel approach for blind ECG restoration using cycle-consistent generative adversarial networks (Cycle-GANs) where the quality of the signal can be improved to a clinical level ECG regardless of the type and severity of the artifacts corrupting the signal. Methods: To further boost the restoration performance, we propose 1D operational Cycle-GANs with the generative neuron model. Results: The proposed approach has been evaluated extensively using one of the largest benchmark ECG datasets from the China Physiological Signal Challenge (CPSC-2020) with more than one million beats. Besides the quantitative and qualitative evaluations, a group of cardiologists performed medical evaluations to validate the quality and usability of the restored ECG, especially for an accurate arrhythmia diagnosis. Significance: As a pioneer study in ECG restoration, the corrupted ECG signals can be restored to clinical level quality. Conclusion: By means of the proposed ECG restoration, the ECG diagnosis accuracy and performance can significantly improve.en_US
dc.description.sponsorshipHuawei; Academy of Finland project AwCHaen_US
dc.description.sponsorshipThis work was supported in part by Huawei and Academy of Finland project AwCHa.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Bıomedıcal Engıneerıngen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGenerative adversarial networksen_US
dc.subjectconvolutional neural networksen_US
dc.subjectoperational neural networksen_US
dc.subjectECG restorationen_US
dc.subjectNoise-Reductionen_US
dc.subjectNeural-Networksen_US
dc.titleBlind ECG Restoration by Operational Cycle-GANsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TBME.2022.3172125-
dc.identifier.pmid35503842en_US
dc.identifier.scopus2-s2.0-85129683826en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridKhandakar, Amith/0000-0001-7068-9112-
dc.authoridRahman, Tawsifur/0000-0002-6938-6496-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridDevecioglu, Ozer Can/0000-0002-9810-622X-
dc.authoridhamid, tahir/0000-0002-5339-159X-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorscopusid7801632948-
dc.authorscopusid57215653815-
dc.authorscopusid56259806600-
dc.authorscopusid57201589931-
dc.authorscopusid8964151000-
dc.authorscopusid23480057400-
dc.authorscopusid6602848666-
dc.identifier.volume69en_US
dc.identifier.issue12en_US
dc.identifier.startpage3572en_US
dc.identifier.endpage3581en_US
dc.identifier.wosWOS:000898766600002en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1978.pdf4 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

18
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

15
checked on Nov 20, 2024

Page view(s)

236
checked on Nov 18, 2024

Download(s)

30
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.