Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1978
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kiranyaz, Serkan | - |
dc.contributor.author | Devecioglu, Ozer Can | - |
dc.contributor.author | İnce, Türker | - |
dc.contributor.author | Malik, Junaid | - |
dc.contributor.author | Chowdhury, Muhammad | - |
dc.contributor.author | Hamid, Tahir | - |
dc.contributor.author | Mazhar, Rashid | - |
dc.date.accessioned | 2023-06-16T14:31:06Z | - |
dc.date.available | 2023-06-16T14:31:06Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 0018-9294 | - |
dc.identifier.issn | 1558-2531 | - |
dc.identifier.uri | https://doi.org/10.1109/TBME.2022.3172125 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1978 | - |
dc.description.abstract | Objective: ECG recordings often suffer from a set of artifacts with varying types, severities, and durations, and this makes an accurate diagnosis by machines or medical doctors difficult and unreliable. Numerous studies have proposed ECG denoising; however, they naturally fail to restore the actual ECG signal corrupted with such artifacts due to their simple and naive noise model. In this pilot study, we propose a novel approach for blind ECG restoration using cycle-consistent generative adversarial networks (Cycle-GANs) where the quality of the signal can be improved to a clinical level ECG regardless of the type and severity of the artifacts corrupting the signal. Methods: To further boost the restoration performance, we propose 1D operational Cycle-GANs with the generative neuron model. Results: The proposed approach has been evaluated extensively using one of the largest benchmark ECG datasets from the China Physiological Signal Challenge (CPSC-2020) with more than one million beats. Besides the quantitative and qualitative evaluations, a group of cardiologists performed medical evaluations to validate the quality and usability of the restored ECG, especially for an accurate arrhythmia diagnosis. Significance: As a pioneer study in ECG restoration, the corrupted ECG signals can be restored to clinical level quality. Conclusion: By means of the proposed ECG restoration, the ECG diagnosis accuracy and performance can significantly improve. | en_US |
dc.description.sponsorship | Huawei; Academy of Finland project AwCHa | en_US |
dc.description.sponsorship | This work was supported in part by Huawei and Academy of Finland project AwCHa. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | Ieee Transactıons on Bıomedıcal Engıneerıng | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Generative adversarial networks | en_US |
dc.subject | convolutional neural networks | en_US |
dc.subject | operational neural networks | en_US |
dc.subject | ECG restoration | en_US |
dc.subject | Noise-Reduction | en_US |
dc.subject | Neural-Networks | en_US |
dc.title | Blind ECG Restoration by Operational Cycle-GANs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/TBME.2022.3172125 | - |
dc.identifier.pmid | 35503842 | en_US |
dc.identifier.scopus | 2-s2.0-85129683826 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | kiranyaz, serkan/0000-0003-1551-3397 | - |
dc.authorid | Gabbouj, Moncef/0000-0002-9788-2323 | - |
dc.authorid | Khandakar, Amith/0000-0001-7068-9112 | - |
dc.authorid | Rahman, Tawsifur/0000-0002-6938-6496 | - |
dc.authorid | İnce, Türker/0000-0002-8495-8958 | - |
dc.authorid | Devecioglu, Ozer Can/0000-0002-9810-622X | - |
dc.authorid | hamid, tahir/0000-0002-5339-159X | - |
dc.authorwosid | Gabbouj, Moncef/G-4293-2014 | - |
dc.authorscopusid | 7801632948 | - |
dc.authorscopusid | 57215653815 | - |
dc.authorscopusid | 56259806600 | - |
dc.authorscopusid | 57201589931 | - |
dc.authorscopusid | 8964151000 | - |
dc.authorscopusid | 23480057400 | - |
dc.authorscopusid | 6602848666 | - |
dc.identifier.volume | 69 | en_US |
dc.identifier.issue | 12 | en_US |
dc.identifier.startpage | 3572 | en_US |
dc.identifier.endpage | 3581 | en_US |
dc.identifier.wos | WOS:000898766600002 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q2 | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
18
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
15
checked on Nov 20, 2024
Page view(s)
236
checked on Nov 18, 2024
Download(s)
30
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.