Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1981
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErdil, Ertunc-
dc.contributor.authorGhani, Muhammad Usman-
dc.contributor.authorRada, Lavdie-
dc.contributor.authorArgunsah, Ali Ozgur-
dc.contributor.authorUnay, Devrim-
dc.contributor.authorTasdizen, Tolga-
dc.contributor.authorCetin, Mujdat-
dc.date.accessioned2023-06-16T14:31:06Z-
dc.date.available2023-06-16T14:31:06Z-
dc.date.issued2017-
dc.identifier.issn1057-7149-
dc.identifier.issn1941-0042-
dc.identifier.urihttps://doi.org/10.1109/TIP.2017.2728185-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1981-
dc.description.abstractIn many image segmentation problems involving limited and low-quality data, employing statistical prior information about the shapes of the objects to be segmented can significantly improve the segmentation result. However, defining probability densities in the space of shapes is an open and challenging problem, especially if the object to be segmented comes from a shape density involving multiple modes ( classes). Existing techniques in the literature estimate the underlying shape distribution by extending Parzen density estimator to the space of shapes. In these methods, the evolving curve may converge to a shape from a wrong mode of the posterior density when the observed intensities provide very little information about the object boundaries. In such scenarios, employing both shape-and class-dependent discriminative feature priors can aid the segmentation process. Such features may involve, e.g., intensity-based, textural, or geometric information about the objects to be segmented. In this paper, we propose a segmentation algorithm that uses nonparametric joint shape and feature priors constructed by Parzen density estimation. We incorporate the learned joint shape and feature prior distribution into a maximum a posteriori estimation framework for segmentation. The resulting optimization problem is solved using active contours. We present experimental results on a variety of synthetic and real data sets from several fields involving multimodal shape densities. Experimental results demonstrate the potential of the proposed method.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [113E603]; Div Of Information & Intelligent Systems; Direct For Computer & Info Scie & Enginr [1149299] Funding Source: National Science Foundationen_US
dc.description.sponsorshipThis work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 113E603.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Image Processıngen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNonparametric joint shape and feature priorsen_US
dc.subjectParzen density estimatoren_US
dc.subjectmultimodal shape densityen_US
dc.subjectimage segmentationen_US
dc.subjectshape prioren_US
dc.subjectLevel Set Segmentationen_US
dc.subjectActive Contoursen_US
dc.subjectModelen_US
dc.subjectDrivenen_US
dc.subjectInformationen_US
dc.subjectSnakesen_US
dc.titleNonparametric Joint Shape and Feature Priors for Image Segmentationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TIP.2017.2728185-
dc.identifier.pmid28727552en_US
dc.identifier.scopus2-s2.0-85028926230en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGhani, Muhammad Usman/0000-0002-6411-423X-
dc.authoridUnay, Devrim/0000-0003-3478-7318-
dc.authoridArgunşah, Ali Özgür/0000-0002-3082-3775-
dc.authoridTasdizen, Tolga/0000-0001-6574-0366-
dc.authoridCetin, Mujdat/0000-0002-9824-1229-
dc.authorwosidGhani, Muhammad Usman/I-7434-2019-
dc.authorwosidUnay, Devrim/AAE-6908-2020-
dc.authorwosidArgunşah, Ali Özgür/AAF-7464-2019-
dc.authorwosidUnay, Devrim/G-6002-2010-
dc.authorscopusid36489496900-
dc.authorscopusid43561269300-
dc.authorscopusid55268679000-
dc.authorscopusid24723512300-
dc.authorscopusid55922238900-
dc.authorscopusid6602852406-
dc.authorscopusid35561229800-
dc.identifier.volume26en_US
dc.identifier.issue11en_US
dc.identifier.startpage5312en_US
dc.identifier.endpage5323en_US
dc.identifier.wosWOS:000407969200017en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1981.pdf
  Restricted Access
0 BAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

17
checked on Nov 20, 2024

Page view(s)

92
checked on Nov 25, 2024

Download(s)

4
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.