Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2007
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMueller, Henning-
dc.contributor.authorUnay, Devrim-
dc.date.accessioned2023-06-16T14:31:09Z-
dc.date.available2023-06-16T14:31:09Z-
dc.date.issued2017-
dc.identifier.issn1520-9210-
dc.identifier.issn1941-0077-
dc.identifier.urihttps://doi.org/10.1109/TMM.2017.2729400-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2007-
dc.description.abstractContent-based multimedia retrieval (CBMR) has been an active research domain since the mid 1990s. In medicine visual retrieval started later and has mostly remained a research instrument and less a clinical tool. The limited size of data sets due to privacy constraints is often mentioned as reason for these limitations. Nevertheless, much work has been done in CBMR, including the availability of increasingly large data sets and scientific challenges. Annotated data sets and clinical data for images have now become available and can be combined for multimodal retrieval. Much has been learned on user behavior and application scenarios. This text is motivated by the advances in medical image analysis and the availability of public large data sets that often include clinical data. It is a systematic review of recent work (concentrating on the period 2011-2017) on multimodal CBMR and image understanding in the medical domain, where image understanding includes techniques such as detection, localization, and classification for leveraging visual content. With the objective of summarizing the current state of research for multimedia researchers outside the medical field, the text provides ways to get data sets and identifies current limitations and promising research directions. The text highlights advances in the past six years and a trend to use larger scale training data and deep learning approaches that can replace/complement handcrafted features. Using images alone will likely only work in limited domains but combining multiple sources of data for multi-modal retrieval has the biggest chances of success, particularly for clinical impact.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Multımedıaen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBig dataen_US
dc.subjectcontent-based image retrievalen_US
dc.subjectdeep learningen_US
dc.subjectlarge scale datasetsen_US
dc.subjectmedical imagesen_US
dc.subjectmulti-modalityen_US
dc.subjectComputer-Aided Diagnosisen_US
dc.subjectHistopathological Image-Analysisen_US
dc.subjectSystemen_US
dc.subjectSegmentationen_US
dc.subjectFrameworken_US
dc.titleRetrieval From and Understanding of Large-Scale Multi-modal Medical Datasets: A Reviewen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TMM.2017.2729400-
dc.identifier.scopus2-s2.0-85028809369en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridUnay, Devrim/0000-0003-3478-7318-
dc.authorwosidUnay, Devrim/AAE-6908-2020-
dc.authorwosidUnay, Devrim/G-6002-2010-
dc.authorscopusid7404945007-
dc.authorscopusid55922238900-
dc.identifier.volume19en_US
dc.identifier.issue9en_US
dc.identifier.startpage2093en_US
dc.identifier.endpage2104en_US
dc.identifier.wosWOS:000411244200012en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2007.pdf449.88 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

43
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

35
checked on Nov 20, 2024

Page view(s)

78
checked on Nov 18, 2024

Download(s)

146
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.