Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2008
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGabbouj, Moncef-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorMalik, Junaid-
dc.contributor.authorZahid, Muhammad Uzair-
dc.contributor.authorİnce, Türker-
dc.contributor.authorChowdhury, Muhammad E. H.-
dc.contributor.authorKhandakar, Amith-
dc.date.accessioned2023-06-16T14:31:09Z-
dc.date.available2023-06-16T14:31:09Z-
dc.date.issued2022-
dc.identifier.issn2162-237X-
dc.identifier.issn2162-2388-
dc.identifier.urihttps://doi.org/10.1109/TNNLS.2022.3158867-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2008-
dc.description.abstractAlthough numerous R-peak detectors have been proposed in the literature, their robustness and performance levels may significantly deteriorate in low-quality and noisy signals acquired from mobile electrocardiogram (ECG) sensors, such as Holter monitors. Recently, this issue has been addressed by deep 1-D convolutional neural networks (CNNs) that have achieved state-of-the-art performance levels in Holter monitors; however, they pose a high complexity level that requires special parallelized hardware setup for real-time processing. On the other hand, their performance deteriorates when a compact network configuration is used instead. This is an expected outcome as recent studies have demonstrated that the learning performance of CNNs is limited due to their strictly homogenous configuration with the sole linear neuron model. This has been addressed by operational neural networks (ONNs) with their heterogenous network configuration encapsulating neurons with various nonlinear operators. In this study, to further boost the peak detection performance along with an elegant computational efficiency, we propose 1-D Self-Organized ONNs (Self-ONNs) with generative neurons. The most crucial advantage of 1-D Self-ONNs over the ONNs is their self-organization capability that voids the need to search for the best operator set per neuron since each generative neuron has the ability to create the optimal operator during training. The experimental results over the China Physiological Signal Challenge-2020 (CPSC) dataset with more than one million ECG beats show that the proposed 1-D Self-ONNs can significantly surpass the state-of-the-art deep CNN with less computational complexity. Results demonstrate that the proposed solution achieves a 99.10% F1-score, 99.79% sensitivity, and 98.42% positive predictivity in the CPSC dataset, which is the best R-peak detection performance ever achieved.en_US
dc.description.sponsorshipAcademy of Finland [334566]en_US
dc.description.sponsorshipThe work was supported in part by the Academy of Finland through the Project AWcHA under Grant 334566.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Neural Networks And Learnıng Systemsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNeuronsen_US
dc.subjectElectrocardiographyen_US
dc.subjectMonitoringen_US
dc.subjectBiomedical monitoringen_US
dc.subjectLibrariesen_US
dc.subjectBenchmark testingen_US
dc.subjectTrainingen_US
dc.subjectConvolutional neural networks (CNNs)en_US
dc.subjectHolter monitorsen_US
dc.subjectoperational neural networks (ONNs)en_US
dc.subjectR-peak detectionen_US
dc.subjectClassificationen_US
dc.subjectSystemen_US
dc.titleRobust Peak Detection for Holter ECGs by Self-Organized Operational Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TNNLS.2022.3158867-
dc.identifier.pmid35344496en_US
dc.identifier.scopus2-s2.0-85127532168en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridKhandakar, Amith/0000-0001-7068-9112-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authoridZahid, Muhammad Uzair/0000-0002-0515-3394-
dc.authoridMalik, Hafiz Muhammad Junaid/0000-0002-2750-4028-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorscopusid7005332419-
dc.authorscopusid7801632948-
dc.authorscopusid57201589931-
dc.authorscopusid57226275010-
dc.authorscopusid56259806600-
dc.authorscopusid8964151000-
dc.authorscopusid36053012700-
dc.identifier.wosWOS:000777113000001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2008.pdf2.06 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

26
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

25
checked on Nov 20, 2024

Page view(s)

230
checked on Nov 18, 2024

Download(s)

22
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.