Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2021
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kiranyaz, Serkan | - |
dc.contributor.author | İnce, Türker | - |
dc.contributor.author | Yildirim, Alper | - |
dc.contributor.author | Gabbouj, Moncef | - |
dc.date.accessioned | 2023-06-16T14:31:11Z | - |
dc.date.available | 2023-06-16T14:31:11Z | - |
dc.date.issued | 2010 | - |
dc.identifier.issn | 1083-4419 | - |
dc.identifier.issn | 1941-0492 | - |
dc.identifier.uri | https://doi.org/10.1109/TSMCB.2009.2015054 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/2021 | - |
dc.description.abstract | In this paper, we propose two novel techniques, which successfully address several major problems in the field of particle swarm optimization (PSO) and promise a significant breakthrough over complex multimodal optimization problems at high dimensions. The first one, which is the so-called multidimensional (MD) PSO, re-forms the native structure of swarm particles in such a way that they can make interdimensional passes with a dedicated dimensional PSO process. Therefore, in an MD search space, where the optimum dimension is unknown, swarm particles can seek both positional and dimensional optima. This eventually removes the necessity of setting a fixed dimension a priori, which is a common drawback for the family of swarm optimizers. Nevertheless, MD PSO is still susceptible to premature convergences due to lack of divergence. Among many PSO variants in the literature, none yields a robust solution, particularly over multimodal complex problems at high dimensions. To address this problem, we propose the fractional global best formation (FGBF) technique, which basically collects all the best dimensional components and fractionally creates an artificial global best (alpha GB) particle that has the potential to be a better guide than the PSO's native gbest particle. This way, the potential diversity that is present among the dimensions of swarm particles can be efficiently used within the alpha GB particle. We investigated both individual and mutual applications of the proposed techniques over the following two well-known domains: 1) nonlinear function minimization and 2) data clustering. An extensive set of experiments shows that in both application domains, MD PSO with FGBF exhibits an impressive speed gain and converges to the global optima at the true dimension regardless of the search | en_US |
dc.description.sponsorship | Academy of Finland [213462] | en_US |
dc.description.sponsorship | Manuscript received May 24, 2008; revised August 28, 2008 and November 24, 2008. First published August 4, 2009; current version published March 17, 2010. This paper was recommended by Associate Editor Q. Zhao. This work was supported by the Academy of Finland under Project 213462 [Finnish Centre of Excellence Program (2006-2011)]. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | Ieee Transactıons on Systems Man And Cybernetıcs Part B-Cybernetıcs | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fractional global best formation (FGBF) | en_US |
dc.subject | multidimensional (MD) search | en_US |
dc.subject | particle swarm optimization (PSO) | en_US |
dc.title | Fractional Particle Swarm Optimization in Multidimensional Search Space | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/TSMCB.2009.2015054 | - |
dc.identifier.pmid | 19661007 | en_US |
dc.identifier.scopus | 2-s2.0-77949775496 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Gabbouj, Moncef/0000-0002-9788-2323 | - |
dc.authorid | Yıldırım, Alper/0000-0002-4099-288X | - |
dc.authorid | İnce, Türker/0000-0002-8495-8958 | - |
dc.authorid | kiranyaz, serkan/0000-0003-1551-3397 | - |
dc.authorwosid | Gabbouj, Moncef/G-4293-2014 | - |
dc.authorwosid | Kiranyaz, Serkan/AAK-1416-2021 | - |
dc.authorwosid | Yıldırım, Alper/ABI-5423-2020 | - |
dc.authorscopusid | 7801632948 | - |
dc.authorscopusid | 56259806600 | - |
dc.authorscopusid | 26424445900 | - |
dc.authorscopusid | 7005332419 | - |
dc.identifier.volume | 40 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 298 | en_US |
dc.identifier.endpage | 319 | en_US |
dc.identifier.wos | WOS:000275665300003 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2021.pdf Restricted Access | 3.01 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
116
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
90
checked on Nov 20, 2024
Page view(s)
260
checked on Nov 18, 2024
Download(s)
2
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.