Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2022
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorİnce, Türker-
dc.contributor.authorUhlmann, Stefan-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:31:12Z-
dc.date.available2023-06-16T14:31:12Z-
dc.date.issued2012-
dc.identifier.issn1083-4419-
dc.identifier.issn1941-0492-
dc.identifier.urihttps://doi.org/10.1109/TSMCB.2012.2187891-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2022-
dc.description.abstractTerrain classification over polarimetric synthetic aperture radar (SAR) images has been an active research field where several features and classifiers have been proposed up to date. However, some key questions, e.g., 1) how to select certain features so as to achieve highest discrimination over certain classes?, 2) how to combine them in the most effective way?, 3) which distance metric to apply?, 4) how to find the optimal classifier configuration for the classification problem in hand?, 5) how to scale/adapt the classifier if large number of classes/features are present?, and finally, 6) how to train the classifier efficiently to maximize the classification accuracy?, still remain unanswered. In this paper, we propose a collective network of (evolutionary) binary classifier (CNBC) framework to address all these problems and to achieve high classification performance. The CNBC framework adapts a Divide and Conquer type approach by allocating several NBCs to discriminate each class and performs evolutionary search to find the optimal BC in each NBC. In such an (incremental) evolution session, the CNBC body can further dynamically adapt itself with each new incoming class/feature set without a full-scale retraining or reconfiguration. Both visual and numerical performance evaluations of the proposed framework over two benchmark SAR images demonstrate its superiority and a significant performance gap against several major classifiers in this field.en_US
dc.description.sponsorshipAcademy of Finland [213462]en_US
dc.description.sponsorshipThis work was supported by the Academy of Finland, project No. 213462 (Finnish Centre of Excellence Program (2006-2011). This paper was recommended by Associate Editor E. Santos Jr.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Systems Man And Cybernetıcs Part B-Cybernetıcsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEvolutionary classifiersen_US
dc.subjectmultidimensional particle swarm optimization (MD-PSO)en_US
dc.subjectpolarimetric synthetic aperture radar (SAR)en_US
dc.subjectUnsupervised Classificationen_US
dc.subjectAutomatic Classificationen_US
dc.subjectSegmentationen_US
dc.subjectDecompositionen_US
dc.titleCollective Network of Binary Classifier Framework for Polarimetric SAR Image Classification: An Evolutionary Approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TSMCB.2012.2187891-
dc.identifier.pmid22481827en_US
dc.identifier.scopus2-s2.0-85045519558en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorscopusid7801632948-
dc.authorscopusid56259806600-
dc.authorscopusid35106079900-
dc.authorscopusid7005332419-
dc.identifier.volume42en_US
dc.identifier.issue4en_US
dc.identifier.startpage1169en_US
dc.identifier.endpage1186en_US
dc.identifier.wosWOS:000308995000018en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2022.pdf
  Restricted Access
3.3 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

19
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

15
checked on Nov 20, 2024

Page view(s)

274
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.