Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2111
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kasimbeyli̇, Refail | - |
dc.contributor.author | Mammadov, Musa | - |
dc.date.accessioned | 2023-06-16T14:31:27Z | - |
dc.date.available | 2023-06-16T14:31:27Z | - |
dc.date.issued | 2009 | - |
dc.identifier.issn | 1052-6234 | - |
dc.identifier.uri | https://doi.org/10.1137/080738106 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/2111 | - |
dc.description.abstract | In this paper we study relations between the directional derivatives, the weak subdifferentials, and the radial epiderivatives for nonconvex real-valued functions. We generalize the well-known theorem that represents the directional derivative of a convex function as a pointwise maximum of its subgradients for the nonconvex case. Using the notion of the weak subgradient, we establish conditions that guarantee equality of the directional derivative to the pointwise supremum of weak subgradients of a nonconvex real-valued function. A similar representation is also established for the radial epiderivative of a nonconvex function. Finally the equality between the directional derivatives and the radial epiderivatives for a nonconvex function is proved. An analogue of the well-known theorem on necessary and sufficient conditions for optimality is drawn without any convexity assumptions. | en_US |
dc.description.sponsorship | Australian Research Council Discovery [DP0556685]; Izmir University of Economics, Turkey; Australian Research Council [DP0556685] Funding Source: Australian Research Council | en_US |
dc.description.sponsorship | The authors acknowledge support by the Australian Research Council Discovery grant DP0556685 and Izmir University of Economics, Turkey. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Siam Publications | en_US |
dc.relation.ispartof | Sıam Journal on Optımızatıon | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | weak subdifferential | en_US |
dc.subject | radial epiderivative | en_US |
dc.subject | directional derivative | en_US |
dc.subject | nonconvex analysis | en_US |
dc.subject | optimality condition | en_US |
dc.subject | Set-Valued Optimization | en_US |
dc.title | ON WEAK SUBDIFFERENTIALS, DIRECTIONAL DERIVATIVES, AND RADIAL EPIDERIVATIVES FOR NONCONVEX FUNCTIONS | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1137/080738106 | - |
dc.identifier.scopus | 2-s2.0-70450216940 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Kasimbeyli OR Gasimov, Refail OR Rafail/0000-0002-7339-9409 | - |
dc.authorid | Mammadov, Musa/0000-0002-2600-3379 | - |
dc.authorwosid | Kasimbeyli OR Gasimov, Refail OR Rafail/AAA-4049-2020 | - |
dc.authorscopusid | 35146065000 | - |
dc.authorscopusid | 15127216400 | - |
dc.identifier.volume | 20 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 841 | en_US |
dc.identifier.endpage | 855 | en_US |
dc.identifier.wos | WOS:000268859300013 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.identifier.wosquality | Q1 | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.09. Industrial Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
45
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
41
checked on Nov 20, 2024
Page view(s)
64
checked on Nov 18, 2024
Download(s)
44
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.