Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2111
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKasimbeyli̇, Refail-
dc.contributor.authorMammadov, Musa-
dc.date.accessioned2023-06-16T14:31:27Z-
dc.date.available2023-06-16T14:31:27Z-
dc.date.issued2009-
dc.identifier.issn1052-6234-
dc.identifier.urihttps://doi.org/10.1137/080738106-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2111-
dc.description.abstractIn this paper we study relations between the directional derivatives, the weak subdifferentials, and the radial epiderivatives for nonconvex real-valued functions. We generalize the well-known theorem that represents the directional derivative of a convex function as a pointwise maximum of its subgradients for the nonconvex case. Using the notion of the weak subgradient, we establish conditions that guarantee equality of the directional derivative to the pointwise supremum of weak subgradients of a nonconvex real-valued function. A similar representation is also established for the radial epiderivative of a nonconvex function. Finally the equality between the directional derivatives and the radial epiderivatives for a nonconvex function is proved. An analogue of the well-known theorem on necessary and sufficient conditions for optimality is drawn without any convexity assumptions.en_US
dc.description.sponsorshipAustralian Research Council Discovery [DP0556685]; Izmir University of Economics, Turkey; Australian Research Council [DP0556685] Funding Source: Australian Research Councilen_US
dc.description.sponsorshipThe authors acknowledge support by the Australian Research Council Discovery grant DP0556685 and Izmir University of Economics, Turkey.en_US
dc.language.isoenen_US
dc.publisherSiam Publicationsen_US
dc.relation.ispartofSıam Journal on Optımızatıonen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectweak subdifferentialen_US
dc.subjectradial epiderivativeen_US
dc.subjectdirectional derivativeen_US
dc.subjectnonconvex analysisen_US
dc.subjectoptimality conditionen_US
dc.subjectSet-Valued Optimizationen_US
dc.titleON WEAK SUBDIFFERENTIALS, DIRECTIONAL DERIVATIVES, AND RADIAL EPIDERIVATIVES FOR NONCONVEX FUNCTIONSen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/080738106-
dc.identifier.scopus2-s2.0-70450216940en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKasimbeyli OR Gasimov, Refail OR Rafail/0000-0002-7339-9409-
dc.authoridMammadov, Musa/0000-0002-2600-3379-
dc.authorwosidKasimbeyli OR Gasimov, Refail OR Rafail/AAA-4049-2020-
dc.authorscopusid35146065000-
dc.authorscopusid15127216400-
dc.identifier.volume20en_US
dc.identifier.issue2en_US
dc.identifier.startpage841en_US
dc.identifier.endpage855en_US
dc.identifier.wosWOS:000268859300013en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2111.pdf201.97 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

45
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

41
checked on Nov 20, 2024

Page view(s)

64
checked on Nov 18, 2024

Download(s)

44
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.