Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2126
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cura, Ozlem Karabiber | - |
dc.contributor.author | Akan, Aydin | - |
dc.date.accessioned | 2023-06-16T14:31:30Z | - |
dc.date.available | 2023-06-16T14:31:30Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 0129-0657 | - |
dc.identifier.issn | 1793-6462 | - |
dc.identifier.uri | https://doi.org/10.1142/S0129065721500052 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/2126 | - |
dc.description.abstract | Epilepsy is a neurological disease that is very common worldwide. Patient's electroencephalography (EEG) signals are frequently used for the detection of epileptic seizure segments. In this paper, a high-resolution time-frequency (TF) representation called Synchrosqueezing Transform (SST) is used to detect epileptic seizures. Two different EEG data sets, the IKCU data set we collected, and the publicly available CHB-MIT data set are analyzed to test the performance of the proposed model in seizure detection. The SST representations of seizure and nonseizure (pre-seizure or inter-seizure) EEG segments of epilepsy patients are calculated. Various features like higher-order joint TF (HOJ-TF) moments and gray-level co-occurrence matrix (GLCM)-based features are calculated using the SST representation. By using single and ensemble machine learning methods such as k-Nearest Neighbor (kNN), Logistic Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), Boosted Trees (BT), and Subspace kNN (S-kNN), EEG features are classified. The proposed SST-based approach achieved 95.1% ACC, 96.87% PRE, 95.54% REC values for the IKCU data set, and 95.13% ACC, 93.37% PRE, 90.30% REC values for the CHB-MIT data set in seizure detection. Results show that the proposed SST-based method utilizing novel TF features outperforms the short-time Fourier transform (STFT)-based approach, providing over 95% accuracy for most cases, and compares well with the existing methods. | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.ispartof | Internatıonal Journal of Neural Systems | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Synchrosqueezing transform (SST) | en_US |
dc.subject | electroencephalogram (EEG) | en_US |
dc.subject | epileptic seizure classification | en_US |
dc.subject | machine learning | en_US |
dc.subject | Time-Frequency Analysis | en_US |
dc.subject | Wavelet Transform | en_US |
dc.subject | Seizure Detection | en_US |
dc.subject | Neural-Network | en_US |
dc.subject | Methodology | en_US |
dc.subject | Image | en_US |
dc.subject | Joint | en_US |
dc.title | Classification of Epileptic EEG Signals Using Synchrosqueezing Transform and Machine Learning | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1142/S0129065721500052 | - |
dc.identifier.pmid | 33522458 | en_US |
dc.identifier.scopus | 2-s2.0-85100590203 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 57195223021 | - |
dc.authorscopusid | 35617283100 | - |
dc.identifier.volume | 31 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.wos | WOS:000637815000005 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q1 | - |
item.grantfulltext | reserved | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
S012906572150026X.pdf Restricted Access | 3.13 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
24
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
24
checked on Nov 20, 2024
Page view(s)
132
checked on Nov 18, 2024
Download(s)
2
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.