Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2127
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzdemir, Mehmet Akif-
dc.contributor.authorCura, Ozlem Karabiber-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T14:31:30Z-
dc.date.available2023-06-16T14:31:30Z-
dc.date.issued2021-
dc.identifier.issn0129-0657-
dc.identifier.issn1793-6462-
dc.identifier.urihttps://doi.org/10.1142/S012906572150026X-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2127-
dc.description.abstractEpilepsy is one of the most common brain disorders worldwide. The most frequently used clinical tool to detect epileptic events and monitor epilepsy patients is the EEG recordings. There have been proposed many computer-aided diagnosis systems using EEG signals for the detection and prediction of seizures. In this study, a novel method based on Fourier-based Synchrosqueezing Transform (SST), which is a high-resolution time-frequency (TF) representation, and Convolutional Neural Network (CNN) is proposed to detect and predict seizure segments. SST is based on the reassignment of signal components in the TF plane which provides highly localized TF energy distributions. Epileptic seizures cause sudden energy discharges which are well represented in the TF plane by using the SST method. The proposed SST-based CNN method is evaluated using the IKCU dataset we collected, and the publicly available CHB-MIT dataset. Experimental results demonstrate that the proposed approach yields high average segment-based seizure detection precision and accuracy rates for both datasets (IKCU: 98.99% PRE and 99.06% ACC; CHB-MIT: 99.81% PRE and 99.63% ACC). Additionally, SST-based CNN approach provides significantly higher segment-based seizure prediction performance with 98.54% PRE and 97.92% ACC than similar approaches presented in the literature using the CHB-MIT dataset.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofInternatıonal Journal of Neural Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional Neural Network (CNN)en_US
dc.subjectDeep Learning (DL)en_US
dc.subjectseizure detectionen_US
dc.subjectseizure predictionen_US
dc.subjectsegment-baseden_US
dc.subjectSynchrosqueezed Transform (SST)en_US
dc.subjecttime-frequency imagesen_US
dc.subjectWavelet Transformen_US
dc.subjectSeizure Detectionen_US
dc.subjectMethodologyen_US
dc.subjectPredictionen_US
dc.subjectNetworken_US
dc.titleEpileptic EEG Classification by Using Time-Frequency Images for Deep Learningen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S012906572150026X-
dc.identifier.pmid34039254en_US
dc.identifier.scopus2-s2.0-85106934222en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridOzdemir, Mehmet Akif/0000-0002-8758-113X-
dc.authorwosidOzdemir, Mehmet Akif/G-7952-2018-
dc.authorscopusid57206479576-
dc.authorscopusid57195223021-
dc.authorscopusid35617283100-
dc.identifier.volume31en_US
dc.identifier.issue8en_US
dc.identifier.wosWOS:000687020300002en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
S012906572150026X.pdf3.13 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

66
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

56
checked on Nov 20, 2024

Page view(s)

132
checked on Nov 18, 2024

Download(s)

266
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.