Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2128
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOlamat, Ali-
dc.contributor.authorOzel, Pinar-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T14:31:31Z-
dc.date.available2023-06-16T14:31:31Z-
dc.date.issued2022-
dc.identifier.issn0129-0657-
dc.identifier.issn1793-6462-
dc.identifier.urihttps://doi.org/10.1142/S0129065721500416-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2128-
dc.description.abstractEpilepsy is a persistent and recurring neurological condition in a community of brain neurons that results from sudden and abnormal electrical discharges. This paper introduces a new form of assessment and interpretation of the changes in electroencephalography (EEG) recordings from different brain regions in epilepsy disorders based on graph analysis and statistical rescale range analysis. In this study, two different states of epilepsy EEG data (preictal and ictal phases), obtained from 17 subjects (18 channels each), were analyzed by a new method called state transfer network (STN). The analysis performed by STN yields a network metric called motifs, which are averaged over all channels and subjects in terms of their persistence level in the network. The results showed an increase of overall motif persistence during the ictal over the preictal phase, reflecting the synchronization increase during the seizure phase (ictal). An evaluation of intermotif cross-correlation indicated a definite manifestation of such synchronization. Moreover, these findings are compared with several other well-known methods such as synchronization likelihood (SL), visibility graph similarity (VGS), and global field synchronization (GFS). It is hinted that the STN method is in good agreement with approaches in the literature and more efficient. The most significant contribution of this research is introducing a novel nonlinear analysis technique of generalized synchronization. The STN method can be used for classifying epileptic seizures based on the synchronization changes between multichannel data.en_US
dc.description.sponsorshipIzmir Katip Celebi University Scientific Research Projects Coordination Unit [2017- O NAP-MUMF0002]en_US
dc.description.sponsorshipThis study was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit: Project number 2017- O NAP-MUMF0002. The authors are thankful to Dr. Galip Akhan and Dr. Sabiha Ture for sharing Epilepsy patients' EEG data for this preliminary study.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofInternatıonal Journal of Neural Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEpilepsyen_US
dc.subjectictalen_US
dc.subjectmotifen_US
dc.subjectnetworken_US
dc.subjectsynchronizationen_US
dc.subjectvisibility graphen_US
dc.subjectGeneralized Synchronizationen_US
dc.subjectFunctional Connectivityen_US
dc.subjectDiagnosisen_US
dc.subjectLikelihooden_US
dc.subjectMethodologyen_US
dc.titleSynchronization Analysis In Epileptic EEG Signals Via State Transfer Networks Based On Visibility Graph Techniqueen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0129065721500416-
dc.identifier.pmid34583629en_US
dc.identifier.scopus2-s2.0-85117083555en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57195220156-
dc.authorscopusid24544550200-
dc.authorscopusid35617283100-
dc.identifier.volume32en_US
dc.identifier.issue2en_US
dc.identifier.wosWOS:000745070100006en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

10
checked on Nov 20, 2024

Page view(s)

112
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.