Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2129
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ozel, Pinar | - |
dc.contributor.author | Olamat, Ali | - |
dc.contributor.author | Akan, Aydin | - |
dc.date.accessioned | 2023-06-16T14:31:31Z | - |
dc.date.available | 2023-06-16T14:31:31Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 0129-0657 | - |
dc.identifier.issn | 1793-6462 | - |
dc.identifier.uri | https://doi.org/10.1142/S0129065721500441 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/2129 | - |
dc.description.abstract | This research presents a new method for detecting obsessive-compulsive disorder (OCD) based on time-frequency analysis of multi-channel electroencephalogram (EEG) signals using the multi-variate synchrosqueezing transform (MSST). With the evolution of multi-channel sensor implementations, the employment of multi-channel techniques for the extraction of features arising from multi-channel dependency and mono-channel characteristics has become common. MSST has recently been proposed as a method for modeling the combined oscillatory mechanisms of multi-channel signals. It makes use of the concepts of instantaneous frequency (IF) and bandwidth. Electrophysiological data, like other nonstationary signals, necessitates both joint time-frequency analysis and independent time and frequency domain studies. The usefulness and effectiveness of a multi-variate, wavelet-based synchrosqueezing algorithm paired with a band extraction method are tested using electroencephalography data obtained from OCD patients and control groups in this research. The proposed methodology yields substantial results when analyzing differences between patient and control groups. | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.ispartof | Internatıonal Journal of Neural Systems | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Electroencephalography | en_US |
dc.subject | obsessive-compulsive disorder | en_US |
dc.subject | multi-variate synchrosqueezing transform | en_US |
dc.subject | Time-Frequency Analysis | en_US |
dc.subject | Hilbert Spectrum | en_US |
dc.subject | Quantitative Eeg | en_US |
dc.subject | Connectivity | en_US |
dc.subject | Complexity | en_US |
dc.subject | Synchronization | en_US |
dc.subject | Classification | en_US |
dc.subject | Networks | en_US |
dc.subject | Graph | en_US |
dc.subject | Qeeg | en_US |
dc.title | A Diagnostic Strategy via Multiresolution Synchrosqueezing Transform on Obsessive Compulsive Disorder | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1142/S0129065721500441 | - |
dc.identifier.pmid | 34514974 | en_US |
dc.identifier.scopus | 2-s2.0-85117106655 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 24544550200 | - |
dc.authorscopusid | 57195220156 | - |
dc.authorscopusid | 35617283100 | - |
dc.identifier.volume | 31 | en_US |
dc.identifier.issue | 12 | en_US |
dc.identifier.wos | WOS:000724957400009 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q1 | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 20, 2024
Page view(s)
100
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.