Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2129
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzel, Pinar-
dc.contributor.authorOlamat, Ali-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T14:31:31Z-
dc.date.available2023-06-16T14:31:31Z-
dc.date.issued2021-
dc.identifier.issn0129-0657-
dc.identifier.issn1793-6462-
dc.identifier.urihttps://doi.org/10.1142/S0129065721500441-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2129-
dc.description.abstractThis research presents a new method for detecting obsessive-compulsive disorder (OCD) based on time-frequency analysis of multi-channel electroencephalogram (EEG) signals using the multi-variate synchrosqueezing transform (MSST). With the evolution of multi-channel sensor implementations, the employment of multi-channel techniques for the extraction of features arising from multi-channel dependency and mono-channel characteristics has become common. MSST has recently been proposed as a method for modeling the combined oscillatory mechanisms of multi-channel signals. It makes use of the concepts of instantaneous frequency (IF) and bandwidth. Electrophysiological data, like other nonstationary signals, necessitates both joint time-frequency analysis and independent time and frequency domain studies. The usefulness and effectiveness of a multi-variate, wavelet-based synchrosqueezing algorithm paired with a band extraction method are tested using electroencephalography data obtained from OCD patients and control groups in this research. The proposed methodology yields substantial results when analyzing differences between patient and control groups.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofInternatıonal Journal of Neural Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectroencephalographyen_US
dc.subjectobsessive-compulsive disorderen_US
dc.subjectmulti-variate synchrosqueezing transformen_US
dc.subjectTime-Frequency Analysisen_US
dc.subjectHilbert Spectrumen_US
dc.subjectQuantitative Eegen_US
dc.subjectConnectivityen_US
dc.subjectComplexityen_US
dc.subjectSynchronizationen_US
dc.subjectClassificationen_US
dc.subjectNetworksen_US
dc.subjectGraphen_US
dc.subjectQeegen_US
dc.titleA Diagnostic Strategy via Multiresolution Synchrosqueezing Transform on Obsessive Compulsive Disorderen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0129065721500441-
dc.identifier.pmid34514974en_US
dc.identifier.scopus2-s2.0-85117106655en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid24544550200-
dc.authorscopusid57195220156-
dc.authorscopusid35617283100-
dc.identifier.volume31en_US
dc.identifier.issue12en_US
dc.identifier.wosWOS:000724957400009en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

100
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.