Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2130
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura, Ozlem Karabiber-
dc.contributor.authorAkan, Aydin-
dc.contributor.authorYilmaz, Gulce Cosku-
dc.contributor.authorTure, Hatice Sabiha-
dc.date.accessioned2023-06-16T14:31:31Z-
dc.date.available2023-06-16T14:31:31Z-
dc.date.issued2022-
dc.identifier.issn0129-0657-
dc.identifier.issn1793-6462-
dc.identifier.urihttps://doi.org/10.1142/S0129065722500423-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2130-
dc.description.abstractDementia is one of the most common neurological disorders causing defection of cognitive functions, and seriously affects the quality of life. In this study, various methods have been proposed for the detection and follow-up of Alzheimer's dementia (AD) with advanced signal processing methods by using electroencephalography (EEG) signals. Signal decomposition-based approaches such as empirical mode decomposition (EMD), ensemble EMD (EEMD), and discrete wavelet transform (DWT) are presented to classify EEG segments of control subjects (CSs) and AD patients. Intrinsic mode functions (IMFs) are obtained from the signals using the EMD and EEMD methods, and the IMFs showing the most significant differences between the two groups are selected by applying previously suggested selection procedures. Five-time-domain and 5-spectral-domain features are calculated using selected IMFs, and five detail and approximation coefficients of DWT. Signal decomposition processes are conducted for both 1 min and 5 s EEG segment durations. For the 1 min segment duration, all the proposed approaches yield prominent classification performances. While the highest classification accuracies are obtained using EMD (91.8%) and EEMD (94.1%) approaches from the temporal/right brain cluster, the highest classification accuracy for the DWT (95.2%) approach is obtained from the temporal/left brain cluster for 1 min segment duration.en_US
dc.description.sponsorshipIzmir Katip Celebi University Scientific Research Projects Coordination Unit [2019-GAP-MMF-0003, 2019TDR-FEBE-0005]en_US
dc.description.sponsorshipThis paper was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit: Project Nos: 2019-GAP-MMF-0003 and 2019TDR-FEBE-0005. We would like to thank EEG Lab technicians of Izmir Katip Celebi University Neurology Department Sleep Laboratory for their support during the EEG recording process.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofInternatıonal Journal of Neural Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDementiaen_US
dc.subjectelectroencephalography (EEG)en_US
dc.subjectempirical mode decomposition (EMD)en_US
dc.subjectensemble EMD (EEMD)en_US
dc.subjectdiscrete wavelet transform (DWT)en_US
dc.subjectmachine learningen_US
dc.subjectHilbert-Huang Transformen_US
dc.subjectEeg Background Activityen_US
dc.subjectCognitive Impairmenten_US
dc.subjectPermutation Entropyen_US
dc.subjectDisease Patientsen_US
dc.subjectComplexityen_US
dc.subjectDiagnosisen_US
dc.subjectConnectivityen_US
dc.subjectFeaturesen_US
dc.titleDetection of Alzheimer's Dementia by Using Signal Decomposition and Machine Learning Methodsen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0129065722500423-
dc.identifier.pmid35946945en_US
dc.identifier.scopus2-s2.0-85136240113en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57195223021-
dc.authorscopusid35617283100-
dc.authorscopusid57419670500-
dc.authorscopusid16644499400-
dc.identifier.volume32en_US
dc.identifier.issue9en_US
dc.identifier.wosWOS:000847297200006en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

8
checked on Nov 20, 2024

Page view(s)

130
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.