Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2252
Title: Identification of the Unknown Coefficient in a Quasi-Linear Parabolic Equation by a Semigroup Approach
Authors: Ozbilge, Ebru
Demir, Ali
Publisher: Springer International Publishing Ag
Abstract: This article presents a semigroup approach to the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient a(x, t) in the quasi-linear parabolic equation u<inf>t</inf>(x, t) = u<inf>xx</inf>(x, t) + a(x, t)u(x, t) with Dirichlet boundary conditions u(0, t) = ψ<inf>0</inf>, u(1, t) = ψ<inf>1</inf>. It is shown that the unknown coefficient a(x, t) can be approximately determined via the semigroup approach. © 2013 Ozbilge and Demir. © 2014 Elsevier B.V., All rights reserved.
URI: https://doi.org/10.1186/1029-242X-2013-212
ISSN: 1025-5834
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
2252.pdf194.93 kBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Oct 29, 2025

WEB OF SCIENCETM
Citations

9
checked on Oct 29, 2025

Page view(s)

134
checked on Oct 27, 2025

Download(s)

30
checked on Oct 27, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.