Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2266
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura, Ozlem Karabiber-
dc.contributor.authorAtli, Sibel Kocaaslan-
dc.contributor.authorTure, Hatice Sabiha-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T14:38:41Z-
dc.date.available2023-06-16T14:38:41Z-
dc.date.issued2020-
dc.identifier.issn1475-925X-
dc.identifier.urihttps://doi.org/10.1186/s12938-020-0754-y-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2266-
dc.description.abstractBackground Epilepsy is one of the most common neurological disorders associated with disruption of brain activity. In the classification and detection of epileptic seizures, electroencephalography (EEG) measurements, which record the electrical activities of the brain, are frequently used. Empirical mode decomposition (EMD) and its derivative, ensemble EMD (EEMD) are recently developed methods used to decompose non-stationary and nonlinear signals such as EEG into a finite number of oscillations called intrinsic mode functions (IMFs). Our main objective in this study is to present a hybrid IMF selection method combining four different approaches (energy, correlation, power spectral distance, and statistical significance measures), and investigate the effect of selected IMFs extracted by EMD and EEMD on the classification. We have applied the proposed IMF selection approach on the classification of EEG signals recorded from epilepsy patients who are under treatment at our collaborator hospital. Multichannel EEG signals collected from epilepsy patients are decomposed into IMFs, and then IMF selection was performed. Finally, time- and spectral-domain, and nonlinear features are extracted and feature sets are created for the classification. Results The maximum classification accuracies obtained using various combinations of IMFs were 94.56%, 95.63%, 96.8%, and 96.25% for SVM, KNN, naive Bayes, and logistic regression classifiers, respectively, by using EMD analysis; whereas, the EEMD approach has provided maximum classification accuracies of 96.06%, 97%, 97%, and 96.25% for SVM, KNN, naive Bayes, and logistic regression, respectively. Classification performance with the same features obtained using direct EEG signals instead of the decomposed IMFs was worse than the aforementioned 2 approaches for every combination. Conclusion Simulation results demonstrate that the proposed IMF selection approach affects the classification results. Also, EEMD provides a robust method for feature extraction from EEG signals in order to classify pre-seizure and seizure segments.en_US
dc.description.sponsorshipIzmir Katip Celebi University Scientific Research Projects Coordination Unit [2019-GAP-MUMF-0003, 2019-TDR-FEBE-0005]en_US
dc.description.sponsorshipThis study was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit: Project numbers: 2019-GAP-MUMF-0003 and 2019-TDR-FEBE-0005.en_US
dc.language.isoenen_US
dc.publisherBmcen_US
dc.relation.ispartofBıomedıcal Engıneerıng Onlıneen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectElectroencephalogram (EEG)en_US
dc.subjectEpilepsyen_US
dc.subjectEpileptic seizure classificationen_US
dc.subjectEmpirical mode decompositionen_US
dc.subjectEnsemble empirical mode decompositionen_US
dc.subjectIntrinsic mode function selectionen_US
dc.subjectHilbert-Huang Transformen_US
dc.subjectWavelet Transformen_US
dc.subjectPerformance Evaluationen_US
dc.subjectEmden_US
dc.titleEpileptic seizure classifications using empirical mode decomposition and its derivativeen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s12938-020-0754-y-
dc.identifier.pmid32059668en_US
dc.identifier.scopus2-s2.0-85079359528en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridAkan, Aydin/0000-0001-8894-5794-
dc.authorscopusid57195223021-
dc.authorscopusid56709608600-
dc.authorscopusid16644499400-
dc.authorscopusid35617283100-
dc.identifier.volume19en_US
dc.identifier.issue1en_US
dc.identifier.wosWOS:000514684600001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2266.pdf2.65 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

60
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

48
checked on Nov 20, 2024

Page view(s)

78
checked on Nov 18, 2024

Download(s)

20
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.