Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2352
Full metadata record
DC FieldValueLanguage
dc.contributor.authorResat, Hamdi Giray-
dc.date.accessioned2023-06-16T14:38:54Z-
dc.date.available2023-06-16T14:38:54Z-
dc.date.issued2020-
dc.identifier.issn1300-1884-
dc.identifier.issn1304-4915-
dc.identifier.urihttps://doi.org/10.17341/gazimmfd.591248-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/390627-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2352-
dc.description.abstractThis study presents a design and development of hybrid forecasting model by using ARIMA and artificial neural networks for short-term energy forecasting processes in energy management systems. Proposed model is applied into a company operating in the tobacco products manufacturing industry and reliability of the model is tested by using real-life data set in illustrative cases. In line with the results obtained from ARIMA method, some of the factors affecting electricity consumption are taken into consideration as input data for artificial neural network model. After considering the correlation between solar energy generation, working hours, production quantities and past electricity consumption data, various number of neurons and different training algorithms are tested to design the optimal system for the company. The proposed hybrid model provides around 39.9% improvement compared to forecast data obtained by using only ARIMA model.en_US
dc.language.isotren_US
dc.publisherGazi Univ, Fac Engineering Architectureen_US
dc.relation.ispartofJournal of the Faculty of Engıneerıng And Archıtecture of Gazı Unıversıtyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectforecastingen_US
dc.subjectenergy Managementen_US
dc.subjectConsumptionen_US
dc.subjectDemanden_US
dc.subjectRegressionen_US
dc.subjectAlgorithmen_US
dc.subjectToolen_US
dc.subjectOilen_US
dc.titleDesign and development of hybrid forecasting model using artificial neural networks and ARIMA methods for sustainable energy management systems: A case study in tobacco industryen_US
dc.typeArticleen_US
dc.identifier.doi10.17341/gazimmfd.591248-
dc.identifier.scopus2-s2.0-85090589680en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridResat, Hamdi/0000-0002-9235-3510-
dc.authorwosidResat, Hamdi/AAB-5868-2020-
dc.identifier.volume35en_US
dc.identifier.issue3en_US
dc.identifier.startpage1129en_US
dc.identifier.endpage1140en_US
dc.identifier.wosWOS:000535954800002en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid390627en_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ4-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2352.pdf606.22 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

8
checked on Nov 20, 2024

Page view(s)

84
checked on Nov 18, 2024

Download(s)

76
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.