Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2589
Title: | Induced growth inhibition, cell cycle arrest and apoptosis in CD133(+)/CD44(+) prostate cancer stem cells by flavopiridol | Authors: | Soner, Burak Cem Aktug, Huseyin Acikgoz, Eda Duzagac, Fahriye Guven, Ummu Ayla, Sule Cal, Cag |
Keywords: | flavopiridol prostate cancer apoptosis stem cell Dependent Kinase Inhibitor In-Vitro P-Tefb Expression Resistance Mechanism Blocks Bcl-2 D1 |
Publisher: | Spandidos Publ Ltd | Abstract: | Flavopiridol is a flavone that inhibits several cyclin-dependent kinases and exhibits potent growth-inhibitory activity, apoptosis and G(1)-phase arrest in a number of human tumor cell lines. Flavopiridol is currently undergoing investigation in human clinical trials. The present study focused on the effect of flavopiridol in cell proliferation, cell cycle progression and apoptosis in prostate cancer stem cells (CSCs). Therefore, cluster of differentiation 133 (CD133)(+high)/CD44(+high) prostate CSCs were isolated from the DU145 human prostate cancer cell line. The cells were treated with flavopiridol in a dose- and time-dependent manner to determine the inhibitory effect. Cell viability and proliferation were analyzed and the efficiency of flavopiridol was assessed using the sphere-forming assay. Flavopiridol was applied to monolayer cultures of CD133(high)/CD44(high) human prostate CSCs at the following final concentrations: 100, 300, 500 and 1000 nM. The cultures were incubated for 24, 48 and 72 h. The half maximal inhibitory concentration (IC50) value of the drug was determined as 500 nM for monolayer cells. Dead cells were analyzed prior and subsequent to exposure to increasing flavopiridol doses. Annexin-V and immunofluorescence analyses were performed for the evaluation of apoptotic pathways. According to the results, flavopiridol treatment caused significant growth inhibition at 500 and 1000 nM when compared to the control at 24 h. G(0)/G(1), analysis showed a statistically significant difference between 100 and 500 nM (P<0.005), 100 and 1000 nM (P<0.001), 300 and 1000 nM (P<0.001), and 500 and 1000 nM (P<0.001). Flavopiridol also significantly influenced the cells in the G(2)/M phase, particularly at highldose treatments. Flavopiridol induced growth inhibition and apoptosis at the IC50 dose (500 nM), resulting in a significant increase in immunofluorescence staining of caspase-3, caspase-8 and p53. In conclusion, the present results indicated that flavopiridol could be a useful therapeutic agent for prostate CSCs by inhibiting tumor growth and malignant progression, and inducing apoptosis. | URI: | https://doi.org/10.3892/ijmm.2014.1930 https://hdl.handle.net/20.500.14365/2589 |
ISSN: | 1107-3756 1791-244X |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2589.pdf Restricted Access | 1.66 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
41
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
40
checked on Nov 20, 2024
Page view(s)
146
checked on Nov 18, 2024
Download(s)
8
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.