Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2599
Title: A Penalty Function Method for Designing Efficient Robust Classifiers With Input Space Optimal Separating Surfaces
Authors: Ucar, Aysegsul
Demir, Yakup
Guzelis, Cuneyt
Keywords: Classification
gradient methods
penalty approach
spherical/elliptical separation
support vector machines
Support
Regularization
Publisher: Scientific Technical Research Council Turkey-Tubitak
Abstract: This paper considers robust classification as a constrained optimization problem. Where the constraints are nonlinear, inequalities defining separating surfaces, whose half spaces include or exclude the data depending on their classes and the cost, are used for attaining robustness and providing the minimum volume regions specified by the half spaces of the surfaces. The constraints are added to the cost using penalty functions to get an unconstrained problem for which the gradient descent method can be used. The separating surfaces, which are aimed to be found in this way, are optimal in the input data space in contrast to the conventional support vector machine (SVM) classifiers designed by the Lagrange multiplier method, which are optimal in the (transformed) feature space. Two types of surfaces, namely hyperellipsoidal and Gaussian-based surfaces created by radial basis functions (RBFs), are focused on in this paper due to their generality. Ellipsoidal classifiers are trained in 2 stages: a spherical surface is found in the first stage, and then the centers and the radii found in the first stage are taken as the initial input for the second stage to find the center and covariance matrix parameters of the ellipsoids. The penalty function approach to the design of robust classifiers enables the handling of multiclass classification. Compared to SVMs, multiple-kernel SVMs, and RBF classifiers, the proposed classifiers are found to be more efficient in terms of the required training time, parameter setting time, testing time, memory usage, and generalization error, especially for medium to large datasets. RBF-based input space optimal classifiers are also introduced for problems that are far from ellipsoidal, e.g., 2 Spirals.
URI: https://doi.org/10.3906/elk-1301-190
https://hdl.handle.net/20.500.14365/2599
ISSN: 1300-0632
1303-6203
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
2599.pdf3.36 MBAdobe PDFView/Open
Show full item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.