Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2600
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumova Metin, Senem-
dc.date.accessioned2023-06-16T14:41:20Z-
dc.date.available2023-06-16T14:41:20Z-
dc.date.issued2018-
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttps://doi.org/10.3906/elk-1709-185-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2600-
dc.description.abstractIn multiword expressions (MWEs), multiple words unite to build a new unit in language. When MWE identification is accepted as a binary classification task, one of the most important factors in performance is to train the classifier with enough number of labelled samples. Since manual labelling is a time-consuming task, the performances of MWE recognition studies are limited with the size of the training sets. In this study, we propose the comparison-based and common-decision co-training approaches in order to enlarge the MWE dataset. In the experiments, the performances of the proposed approaches were compared to those of the standard co-training [1] and manual labelling where statistical and linguistic features are employed as two different views of the MWE dataset [2]. A number of tests with different settings were performed on a Turkish MWE dataset. Ten different classifiers were utilized in the experiments and the best performing classifier pair was observed to be the SMO-SMO pair. The experimental results showed that the common-decision co-training approach is an alternative to hand-labeling of large MWE datasets and both newly proposed approaches outperform the standard co-training [2] when the training set is to be enlarged in MWE classification.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey [115E469]en_US
dc.description.sponsorshipThis work was carried out under the grant of The Scientific and Technological Research Council of Turkey (Project No. 115E469, Identification of Multiword Expressions in Turkish Texts). Further information/statistics on the MWE dataset is available on the project web page (http://app.ieu-nlpteam.com:8000).en_US
dc.language.isoenen_US
dc.publisherScientific Technical Research Council Turkey-Tubitaken_US
dc.relation.ispartofTurkısh Journal of Electrıcal Engıneerıng And Computer Scıencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMultiword expressionen_US
dc.subjectclassificationen_US
dc.subjecttraining seten_US
dc.subjectco-trainingen_US
dc.titleEnlarging multiword expression dataset by co-trainingen_US
dc.typeArticleen_US
dc.identifier.doi10.3906/elk-1709-185-
dc.identifier.scopus2-s2.0-85054525652en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKumova Metin, Senem/0000-0002-9606-3625-
dc.authorscopusid24471923700-
dc.identifier.volume26en_US
dc.identifier.issue5en_US
dc.identifier.startpage2583en_US
dc.identifier.endpage2594en_US
dc.identifier.wosWOS:000448109200034en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid323563en_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ4-
item.grantfulltextembargo_20300101-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.04. Software Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2600.pdf
  Until 2030-01-01
506.55 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

98
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.