Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2601
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSayilgan, Ebru-
dc.contributor.authorYuce, Yilmaz Kemal-
dc.contributor.authorIsler, Yalcin-
dc.date.accessioned2023-06-16T14:41:20Z-
dc.date.available2023-06-16T14:41:20Z-
dc.date.issued2021-
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttps://doi.org/10.3906/elk-2010-26-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/524231-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2601-
dc.description.abstractWavelet transform (WT) is an important tool to analyze the time-frequency structure of a signal. The WT relies on a prototype signal that is called the mother wavelet. However, there is no single universal wavelet that fits all signals. Thus, the selection of mother wavelet function might be challenging to represent the signal to achieve the optimum performance. There are some studies to determine the optimal mother wavelet for other biomedical signals; however, there exists no evaluation for steady-state visually-evoked potentials (SSVEP) signals that becomes very popular among signals manipulated for brain-computer interfaces (BCIs) recently. This study aims to explore, if any, the mother wavelet that suits best to represent SSVEP signals for classification purposes in BCIs. In this study, three common wavelet-based features (variance, energy, and entropy) extracted from SSVEP signals for five distinct EEG frequency bands (delta, theta, alpha, beta, and gamma) were classified to determine three different user commands using six fundamental classifier algorithms. The study was repeated for six different commonly-used mother wavelet functions (haar, daubechies, symlet, coiflet, biorthogonal, and reverse biorthogonal). The best discrimination was obtained with an accuracy of 100% and the average of 75.85%. Besides, ensemble learner gives the highest accuracies for half of the trials. Haar wavelet had the best performance in representing SSVEP signals among other all mother wavelets adopted in this study. Concomitantly, all three features of energy, variance, and entropy should be used together since none of these features had superior classifier performance alone.en_US
dc.language.isoenen_US
dc.publisherTubitak Scientific & Technical Research Council Turkeyen_US
dc.relation.ispartofTurkısh Journal of Electrıcal Engıneerıng And Computer Scıencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSteady-state visually-evoked potentialsen_US
dc.subjectbrain-computer interfacesen_US
dc.subjectwavelet transformen_US
dc.subjectmother wavelet selectionen_US
dc.subjectpattern recognitionen_US
dc.subjectClassificationen_US
dc.subjectCommunicationen_US
dc.subjectPerformanceen_US
dc.subjectFamiliesen_US
dc.subjectEntropyen_US
dc.titleEvaluation of Mother Wavelets on Steady-State Visually-Evoked Potentials for Triple-Command Brain-Computer Interfacesen_US
dc.typeArticleen_US
dc.identifier.doi10.3906/elk-2010-26-
dc.identifier.scopus2-s2.0-85117077254-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridSayilgan, Ebru/0000-0001-5059-3201-
dc.authoridIsler, Yalcin/0000-0002-2150-4756-
dc.authorwosidSayilgan, Ebru/AAB-3993-2021-
dc.authorwosidIsler, Yalcin/A-7399-2019-
dc.authorscopusid57195222602-
dc.authorscopusid18635626400-
dc.authorscopusid6504389809-
dc.identifier.volume29en_US
dc.identifier.issue5en_US
dc.identifier.startpage2263en_US
dc.identifier.endpage2279en_US
dc.identifier.wosWOS:000703667100001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid524231-
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ4-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.dept05.11. Mechatronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2601.pdf940.85 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Jan 1, 2025

WEB OF SCIENCETM
Citations

9
checked on Jan 1, 2025

Page view(s)

98
checked on Dec 30, 2024

Download(s)

20
checked on Dec 30, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.