Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2602
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Caner, Serhat | - |
dc.contributor.author | Erdogmus, Nesli | - |
dc.contributor.author | Erten, Y. Murat | - |
dc.date.accessioned | 2023-06-16T14:41:20Z | - |
dc.date.available | 2023-06-16T14:41:20Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 1300-0632 | - |
dc.identifier.issn | 1303-6203 | - |
dc.identifier.uri | https://doi.org/10.3906/elk-2104-50 | - |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/528806 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/2602 | - |
dc.description.abstract | An intrusion detection system is an automated monitoring tool that analyzes network traffic and detects malicious activities by looking out either for known patterns of attacks or for an anomaly. In this study, intrusion detection and classification performances of different deep learning based systems are examined. For this purpose, 24 deep neural networks with four different architectures are trained and evaluated on CICIDS2017 dataset. Furthermore, the best performing model is utilized to inspect raw network traffic features and rank them with respect to their contributions to success rates. By selecting features with respect to their ranks, sets of varying size from 3 to 77 are assessed in terms of classification accuracy and time efficiency. The results show that recurrent neural networks with a certain level of complexity can achieve comparable success rates with state-of-the-art systems using a small feature set of size 9; while the average time required to classify a test sample is halved compared to the complete set. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Scientific Technical Research Council Turkey-Tubitak | en_US |
dc.relation.ispartof | Turkısh Journal of Electrıcal Engıneerıng And Computer Scıences | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Network intrusion detection | en_US |
dc.subject | deep learning | en_US |
dc.subject | feature selection | en_US |
dc.subject | recurrent neural networks | en_US |
dc.title | Performance analysis and feature selection for network-based intrusion detection with deep learning | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3906/elk-2104-50 | - |
dc.identifier.scopus | 2-s2.0-85128265867 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 57577197500 | - |
dc.authorscopusid | 35746019000 | - |
dc.authorscopusid | 55665216700 | - |
dc.identifier.volume | 30 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 629 | en_US |
dc.identifier.endpage | 643 | en_US |
dc.identifier.wos | WOS:000774599800011 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.trdizinid | 528806 | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.identifier.wosquality | Q4 | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | embargo_20300101 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 05.05. Computer Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2602.pdf Until 2030-01-01 | 806.94 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 20, 2024
Page view(s)
34
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.