Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2602
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCaner, Serhat-
dc.contributor.authorErdogmus, Nesli-
dc.contributor.authorErten, Y. Murat-
dc.date.accessioned2023-06-16T14:41:20Z-
dc.date.available2023-06-16T14:41:20Z-
dc.date.issued2022-
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttps://doi.org/10.3906/elk-2104-50-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/528806-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2602-
dc.description.abstractAn intrusion detection system is an automated monitoring tool that analyzes network traffic and detects malicious activities by looking out either for known patterns of attacks or for an anomaly. In this study, intrusion detection and classification performances of different deep learning based systems are examined. For this purpose, 24 deep neural networks with four different architectures are trained and evaluated on CICIDS2017 dataset. Furthermore, the best performing model is utilized to inspect raw network traffic features and rank them with respect to their contributions to success rates. By selecting features with respect to their ranks, sets of varying size from 3 to 77 are assessed in terms of classification accuracy and time efficiency. The results show that recurrent neural networks with a certain level of complexity can achieve comparable success rates with state-of-the-art systems using a small feature set of size 9; while the average time required to classify a test sample is halved compared to the complete set.en_US
dc.language.isoenen_US
dc.publisherScientific Technical Research Council Turkey-Tubitaken_US
dc.relation.ispartofTurkısh Journal of Electrıcal Engıneerıng And Computer Scıencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNetwork intrusion detectionen_US
dc.subjectdeep learningen_US
dc.subjectfeature selectionen_US
dc.subjectrecurrent neural networksen_US
dc.titlePerformance analysis and feature selection for network-based intrusion detection with deep learningen_US
dc.typeArticleen_US
dc.identifier.doi10.3906/elk-2104-50-
dc.identifier.scopus2-s2.0-85128265867en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57577197500-
dc.authorscopusid35746019000-
dc.authorscopusid55665216700-
dc.identifier.volume30en_US
dc.identifier.issue3en_US
dc.identifier.startpage629en_US
dc.identifier.endpage643en_US
dc.identifier.wosWOS:000774599800011en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid528806en_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ4-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.grantfulltextembargo_20300101-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
crisitem.author.dept05.05. Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2602.pdf
  Until 2030-01-01
806.94 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

34
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.