Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2709
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTurkan, Mehmet-
dc.date.accessioned2023-06-16T14:46:53Z-
dc.date.available2023-06-16T14:46:53Z-
dc.date.issued2021-
dc.identifier.issn1300-7009-
dc.identifier.issn2147-5881-
dc.identifier.urihttps://doi.org/10.5505/pajes.2020.69158-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/488103-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2709-
dc.description.abstractAn image quality metric is proposed by introducing a new framework for full reference image quality assessment from the perspective of image patch manifolds. Assuming that most natural scenes are sampled from low dimensional manifolds or submanifolds, perceived image degradations in structural variations can be quantitatively evaluated on the surfaces of highly nonlinear image manifolds. Manifold distortion image quality index first characterizes intrinsic geometric properties of the locally linear manifold structures of spatially local patch spaces, and then measures the deviation from the original smooth manifold structure to calculate the distortion index. Experimental results demonstrate a strong promise with a comparison to both subjective evaluation and state-of-the-art objective quality assessment methods.en_US
dc.language.isoenen_US
dc.publisherPamukkale Univen_US
dc.relation.ispartofPamukkale Unıversıty Journal of Engıneerıng Scıences-Pamukkale Unıversıtesı Muhendıslık Bılımlerı Dergısıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectImage quality assessmenten_US
dc.subjectImage quality indexen_US
dc.subjectManifold learningen_US
dc.subjectNeighbor embeddingen_US
dc.subjectFidelity-Criterionen_US
dc.subjectSuperresolutionen_US
dc.subjectDegradationen_US
dc.subjectInformationen_US
dc.titleImage quality assessment based on manifold distortionen_US
dc.typeArticleen_US
dc.identifier.doi10.5505/pajes.2020.69158-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridTurkan, Mehmet/0000-0002-9780-9249-
dc.authorwosidTurkan, Mehmet/AGQ-8084-2022-
dc.identifier.volume27en_US
dc.identifier.issue5en_US
dc.identifier.startpage610en_US
dc.identifier.endpage617en_US
dc.identifier.wosWOS:000708158900005en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid488103en_US
dc.identifier.scopusqualityN/A-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2709.pdf1.11 MBAdobe PDFView/Open
2709.pdf1.11 MBAdobe PDFView/Open
2709.pdf1.11 MBAdobe PDFView/Open
2709.pdf1.11 MBAdobe PDFView/Open
2709.pdf1.11 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

44
checked on Nov 18, 2024

Download(s)

84
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.