Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2769
Title: Automated Segmentation of Cells in Phase Contrast Optical Microscopy Time Series Images
Other Titles: Faz kontrast optik mikroskopi zaman serisi görüntülerinde hücrelerin otomatik bölütlenmesi
Authors: Binici, Rifki Can
Sahin, Umut
Ayanzadeh, Aydin
Toreyin, Behcet Ugur
Onal, Sevgi
Okvur, Devrim Pesen
Ozuysal, Ozden Yalcin
Keywords: phase contrast optical microscopy
time series
cell segmentation
deep learning
SegNet
Tracking
Publisher: IEEE
Abstract: Phase contrast optical microscopy is a preferred imaging technique for live-cell, temporal analysis. Segmentation of cells from time series data acquired with this technique is a labor-intensive and time-consuming task that cell biology researchers need solution for. In this study traditional image processing and deep learning based approaches for automated cell segmentation from phase contrast optical microscopy time series are presented, and their performances are evaluated against manually annotated datasets.
Description: Medical Technologies Congress (TIPTEKNO) -- OCT 03-05, 2019 -- Izmir, TURKEY
URI: https://hdl.handle.net/20.500.14365/2769
ISBN: 978-1-7281-2420-9
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
2769.pdf
  Until 2030-01-01
898.14 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

76
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.