Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2969
Title: | Classification of Hand Gestures using sEMG Signals and Hilbert-Huang Transform | Authors: | Kisa, Deniz Hande Ozdemir, Mehmet Akif Guren, Onan Akan, Aydin |
Keywords: | Electromyography GLCM time-frequency analysis machine learning EMD |
Publisher: | IEEE | Abstract: | Artificial intelligence is effectively utilized for hand gesture classification in myoelectric systems. In this study, hand movement classification is performed with ML algorithms using electromyography (EMG) signals of 7 hand gestures. The Hilbert-Huang Transform (HHT) was applied to the preprocessed EMG signals to obtain the Hilbert-Huang spectrum (HHS). Six different Gray Level Co-occurrence Matrix (GLCM)-based features were extracted from HHS images. In order to validate the proposed method, the same features were extracted from the snapshots of EMG signals and intrinsic mode functions (IMF) extracted by empirical mode decomposition (EMD), separately. These features are classified with 29 different Machine learning (ML) approaches in the MATLAB (R) environment. Among these three approaches, the HHS-based novel method yielded the best performance, with an accuracy of 90.87% from the Cubic Support Vector Machine (SVM). The novel HHS and GLCM-based approach may be used in EMG-based biomedical systems as a promising alternative. | Description: | 30th European Signal Processing Conference (EUSIPCO) -- AUG 29-SEP 02, 2022 -- Belgrade, SERBIA | URI: | https://hdl.handle.net/20.500.14365/2969 | ISBN: | 978-90-827970-9-1 | ISSN: | 2076-1465 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2120.pdf Restricted Access | 677.1 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 20, 2024
Page view(s)
80
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.