Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3029
Title: A Comparative Analysis on Fruit Freshness Classification
Authors: Karakaya, Diclehan
Ulucan, Oguzhan
Turkan, Mehmet
Keywords: fruit freshness classification
fruit classification
feature extraction
support vector machines
Vision
Publisher: IEEE
Abstract: Automatic classification of food freshness plays a significant role in the food industry. Food spoilage detection from production to consumption stages needs to be performed minutely. Traditional methods which detect the spoilage of food are slow, laborious, subjective and time consuming. As a result, fast and accurate automatic methods need to be introduced to industrial applications. This study comparatively analyses an image dataset containing samples of three types of fruits to distinguish fresh samples from those of rotten. The proposed vision based framework utilizes histograms, gray level co-occurrence matrices, bag of features and convolutional neural networks for feature extraction. The classification process is carried out through well-known support vector machines based classifiers. After testing several experimental scenarios including binary and multi-class classification problems, it turns out to be the highest success rates are obtained consistently with the adoption of the convolutional neural networks based features.
Description: Innovations in Intelligent Systems and Applications Conference (ASYU) -- OCT 31-NOV 02, 2019 -- Izmir, TURKEY
URI: https://hdl.handle.net/20.500.14365/3029
ISBN: 978-1-7281-2868-9
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
2163.pdf
  Restricted Access
1.15 MBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

32
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 20, 2024

Page view(s)

86
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.