Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3372
Title: | Comparative Study of Identification Using Nonlinear Least Squares Errors and Particle Swarm Optimization Algorithms for a Nonlinear DC Motor Model | Authors: | Abedinifar M. Ertugrul S. |
Keywords: | Identification Nonlinear least square errors Nonlinear modeling Particle Swarm Optimization |
Publisher: | Springer Science and Business Media Deutschland GmbH | Abstract: | For an accurate dynamic analysis of the real-world systems, there is an extensive demand for developing the mathematical models. An accurate mathematical model can be used for optimization, fault diagnosis, controller design, etc. Many studies have been performed for developing the mathematical models of the real-world systems. They commonly utilize linear models while ignoring the possible existing nonlinearities in the model. However, having a general mathematical model including nonlinearities has great significance in performance analysis and proper control of the systems. In this paper, two algorithms including Nonlinear Least Squares Errors (NLSE) and Particle Swarm Optimization (PSO) are utilized for model identification. For this aim, the nonlinear model of a Direct Current (DC) motor is used as a case study to compare the performance of the two algorithms. In the first step, a white-box mathematical model of the DC motor including the nonlinear friction terms is developed. Then, the artificial data is generated through the developed model with the real parameters of a DC motor. Finally, NLSE and PSO algorithms are carried out to determine the unknown parameters of the nonlinear model through generated artificial data. All unknown parameters of the model are identified at the same time. The results of the two algorithms are evaluated and compared. It is shown that the PSO algorithm determines the model parameters more accurately compared to the NLSE algorithm. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. | Description: | International Conference on Intelligent and Fuzzy Systems, INFUS 2021 -- 24 August 2021 through 26 August 2021 -- 264409 | URI: | https://doi.org/10.1007/978-3-030-85626-7_65 https://hdl.handle.net/20.500.14365/3372 |
ISBN: | 9.78303E+12 | ISSN: | 2367-3370 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 13, 2024
Page view(s)
112
checked on Nov 18, 2024
Download(s)
8
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.