Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3398
Title: Cauchy's theorem for orthogonal polyhedra of genus 0
Authors: Biedl T.
Genc B.
Keywords: Convex polyhedrons
Dihedral angles
Linear-time algorithms
Clustering algorithms
Radar antennas
Abstract: A famous theorem by Cauchy states that the dihedral angles of a convex polyhedron are determined by the incidence structure and face-polygons alone. In this paper, we prove the same for orthogonal polyhedra of genus 0 as long as no face has a hole. Our proof yields a linear-time algorithm to find the dihedral angles. © 2009 Springer Berlin Heidelberg.
Description: 17th Annual European Symposium on Algorithms, ESA 2009 -- 7 September 2009 through 9 September 2009 -- Copenhagen -- 77841
URI: https://doi.org/10.1007/978-3-642-04128-0_7
https://hdl.handle.net/20.500.14365/3398
ISBN: 3642041272
9783642041273
ISSN: 0302-9743
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
2504.pdf72.52 kBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 27, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 20, 2024

Page view(s)

50
checked on Nov 25, 2024

Download(s)

10
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.