Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3401
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrestwich S.D.-
dc.contributor.authorTarim S.A.-
dc.contributor.authorRossi R.-
dc.contributor.authorHnich B.-
dc.date.accessioned2023-06-16T14:58:02Z-
dc.date.available2023-06-16T14:58:02Z-
dc.date.issued2009-
dc.identifier.isbn3642044271-
dc.identifier.isbn9783642044274-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://doi.org/10.1007/978-3-642-04428-1_35-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3401-
dc.descriptionDIMACS;DAUPHINE UNIVERSITE PARIS;CNRS;COST;EUROPEAN SCIENCE FOUNDATIONen_US
dc.description1st International Conference on Algorithmic Decision Theory, ADT 2009 -- 20 October 2009 through 23 October 2009 -- Venice -- 77991en_US
dc.description.abstractStochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve large instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose a neuroevolutionary approach: using an artificial neural network to approximate the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find good plans. © 2009 Springer-Verlag Berlin Heidelberg.en_US
dc.description.sponsorshipSOBAG-108K027; Science Foundation Ireland, SFI: 05/IN/I886; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAKen_US
dc.description.sponsorshipB. Hnich is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027. This material is based in part upon works supported by the Science Foundation Ireland under Grant No. 05/IN/I886.en_US
dc.language.isoenen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAlternative approachen_US
dc.subjectArtificial Neural Networken_US
dc.subjectDecision variablesen_US
dc.subjectHard problemsen_US
dc.subjectMultiechelonen_US
dc.subjectNear-optimal solutionsen_US
dc.subjectNon-linear constraintsen_US
dc.subjectOptimisationsen_US
dc.subjectReduction techniquesen_US
dc.subjectScenario treeen_US
dc.subjectSimulation optimisationen_US
dc.subjectSimulation-baseden_US
dc.subjectStochastic inventoryen_US
dc.subjectComputer simulationen_US
dc.subjectDecision treesen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectGame theoryen_US
dc.subjectInventory controlen_US
dc.subjectOptimizationen_US
dc.subjectStochastic systemsen_US
dc.subjectNeural networksen_US
dc.titleNeuroevolutionary inventory control in multi-echelon systemsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-642-04428-1_35-
dc.identifier.scopus2-s2.0-71549146592en_US
dc.authorscopusid7004234709-
dc.authorscopusid35563636800-
dc.authorscopusid6602458958-
dc.identifier.volume5783 LNAIen_US
dc.identifier.startpage402en_US
dc.identifier.endpage413en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2509.pdf206.44 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

Page view(s)

52
checked on Nov 18, 2024

Download(s)

10
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.