Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3401
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Prestwich S.D. | - |
dc.contributor.author | Tarim S.A. | - |
dc.contributor.author | Rossi R. | - |
dc.contributor.author | Hnich B. | - |
dc.date.accessioned | 2023-06-16T14:58:02Z | - |
dc.date.available | 2023-06-16T14:58:02Z | - |
dc.date.issued | 2009 | - |
dc.identifier.isbn | 3642044271 | - |
dc.identifier.isbn | 9783642044274 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | https://doi.org/10.1007/978-3-642-04428-1_35 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3401 | - |
dc.description | DIMACS;DAUPHINE UNIVERSITE PARIS;CNRS;COST;EUROPEAN SCIENCE FOUNDATION | en_US |
dc.description | 1st International Conference on Algorithmic Decision Theory, ADT 2009 -- 20 October 2009 through 23 October 2009 -- Venice -- 77991 | en_US |
dc.description.abstract | Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve large instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose a neuroevolutionary approach: using an artificial neural network to approximate the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find good plans. © 2009 Springer-Verlag Berlin Heidelberg. | en_US |
dc.description.sponsorship | SOBAG-108K027; Science Foundation Ireland, SFI: 05/IN/I886; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAK | en_US |
dc.description.sponsorship | B. Hnich is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027. This material is based in part upon works supported by the Science Foundation Ireland under Grant No. 05/IN/I886. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Alternative approach | en_US |
dc.subject | Artificial Neural Network | en_US |
dc.subject | Decision variables | en_US |
dc.subject | Hard problems | en_US |
dc.subject | Multiechelon | en_US |
dc.subject | Near-optimal solutions | en_US |
dc.subject | Non-linear constraints | en_US |
dc.subject | Optimisations | en_US |
dc.subject | Reduction techniques | en_US |
dc.subject | Scenario tree | en_US |
dc.subject | Simulation optimisation | en_US |
dc.subject | Simulation-based | en_US |
dc.subject | Stochastic inventory | en_US |
dc.subject | Computer simulation | en_US |
dc.subject | Decision trees | en_US |
dc.subject | Evolutionary algorithms | en_US |
dc.subject | Game theory | en_US |
dc.subject | Inventory control | en_US |
dc.subject | Optimization | en_US |
dc.subject | Stochastic systems | en_US |
dc.subject | Neural networks | en_US |
dc.title | Neuroevolutionary inventory control in multi-echelon systems | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1007/978-3-642-04428-1_35 | - |
dc.identifier.scopus | 2-s2.0-71549146592 | en_US |
dc.authorscopusid | 7004234709 | - |
dc.authorscopusid | 35563636800 | - |
dc.authorscopusid | 6602458958 | - |
dc.identifier.volume | 5783 LNAI | en_US |
dc.identifier.startpage | 402 | en_US |
dc.identifier.endpage | 413 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | open | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 20, 2024
Page view(s)
52
checked on Nov 18, 2024
Download(s)
10
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.