Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3404
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Prestwich S.D. | - |
dc.contributor.author | Tarim S.A. | - |
dc.contributor.author | Rossi R. | - |
dc.contributor.author | Hnich B. | - |
dc.date.accessioned | 2023-06-16T14:58:02Z | - |
dc.date.available | 2023-06-16T14:58:02Z | - |
dc.date.issued | 2010 | - |
dc.identifier.isbn | 3642135196 | - |
dc.identifier.isbn | 9783642135194 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | https://doi.org/10.1007/978-3-642-13520-0_30 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3404 | - |
dc.description | The ARTIST Design;Network of Excellence;The Institute for Computational Sustainability (ICS);The Cork Constraint Computation Center;The Association for Constraint Programming (ACP) | en_US |
dc.description | 7th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2010 -- 14 June 2010 through 18 June 2010 -- Bologna -- 81368 | en_US |
dc.description.abstract | Stochastic Constraint Programming is an extension of Constraint Programming for modelling and solving combinatorial problems involving uncertainty. A solution to such a problem is a policy tree that specifies decision variable assignments in each scenario. Several complete solution methods have been proposed, but the authors recently showed that an incomplete approach based on neuroevolution is more scalable. In this paper we hybridise neuroevolution with constraint filtering on hard constraints, and show both theoretically and empirically that the hybrid can learn more complex policies more quickly. © 2010 Springer-Verlag. | en_US |
dc.description.sponsorship | SOBAG-108K027; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAK; Hacettepe Üniversitesi | en_US |
dc.description.sponsorship | S. A. Tarim and B. Hnich are supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027. S. A. Tarim is also supported by Hacettepe University (BAB). A version of this algorithm will used to further research in risk management as part of a collaboration with IBM Research, with partial support from the Irish Development Association and IRCSET. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Combinatorial problem | en_US |
dc.subject | Complete solutions | en_US |
dc.subject | Constraint programming | en_US |
dc.subject | Decision variables | en_US |
dc.subject | Hard constraints | en_US |
dc.subject | Neuroevolution | en_US |
dc.subject | Stochastic constraints | en_US |
dc.subject | Combinatorial optimization | en_US |
dc.subject | Computer programming | en_US |
dc.subject | Constraint theory | en_US |
dc.subject | Decision making | en_US |
dc.subject | Stochastic systems | en_US |
dc.subject | Problem solving | en_US |
dc.title | Stochastic Constraint Programming by Neuroevolution With Filtering | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1007/978-3-642-13520-0_30 | - |
dc.identifier.scopus | 2-s2.0-77955452287 | - |
dc.authorscopusid | 7004234709 | - |
dc.authorscopusid | 35563636800 | - |
dc.authorscopusid | 6602458958 | - |
dc.identifier.volume | 6140 LNCS | en_US |
dc.identifier.startpage | 282 | en_US |
dc.identifier.endpage | 286 | en_US |
dc.identifier.wos | WOS:000279617200030 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.identifier.wosquality | N/A | - |
item.openairetype | Conference Object | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
5
checked on Apr 2, 2025
WEB OF SCIENCETM
Citations
3
checked on Apr 2, 2025
Page view(s)
82
checked on Mar 31, 2025
Download(s)
10
checked on Mar 31, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.