Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3524
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kiranyaz S. | - |
dc.contributor.author | İnce, Türker | - |
dc.contributor.author | Hamila R. | - |
dc.contributor.author | Gabbouj, Moncef | - |
dc.date.accessioned | 2023-06-16T15:00:42Z | - |
dc.date.available | 2023-06-16T15:00:42Z | - |
dc.date.issued | 2015 | - |
dc.identifier.isbn | 9.78142E+12 | - |
dc.identifier.issn | 1557-170X | - |
dc.identifier.uri | https://doi.org/10.1109/EMBC.2015.7318926 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3524 | - |
dc.description | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 -- 25 August 2015 through 29 August 2015 -- 116805 | en_US |
dc.description.abstract | We propose a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system using an adaptive implementation of 1D Convolutional Neural Networks (CNNs) that can fuse feature extraction and classification into a unified learner. In this way, a dedicated CNN will be trained for each patient by using relatively small common and patient-specific training data and thus it can also be used to classify long ECG records such as Holter registers in a fast and accurate manner. Alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. The experimental results demonstrate that the proposed system achieves a superior classification performance for the detection of ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB). © 2015 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | algorithm | en_US |
dc.subject | artificial neural network | en_US |
dc.subject | electrocardiography | en_US |
dc.subject | heart ventricle extrasystole | en_US |
dc.subject | human | en_US |
dc.subject | pathophysiology | en_US |
dc.subject | physiologic monitoring | en_US |
dc.subject | supraventricular premature beat | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Atrial Premature Complexes | en_US |
dc.subject | Electrocardiography | en_US |
dc.subject | Humans | en_US |
dc.subject | Monitoring, Physiologic | en_US |
dc.subject | Neural Networks (Computer) | en_US |
dc.subject | Ventricular Premature Complexes | en_US |
dc.title | Convolutional Neural Networks for patient-specific ECG classification | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/EMBC.2015.7318926 | - |
dc.identifier.pmid | 26736826 | en_US |
dc.identifier.scopus | 2-s2.0-84953295695 | en_US |
dc.authorscopusid | 7801632948 | - |
dc.authorscopusid | 6603562710 | - |
dc.authorscopusid | 7005332419 | - |
dc.identifier.volume | 2015-November | en_US |
dc.identifier.startpage | 2608 | en_US |
dc.identifier.endpage | 2611 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2616.pdf Restricted Access | 790.3 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
243
checked on Nov 20, 2024
Page view(s)
244
checked on Nov 18, 2024
Download(s)
2
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.