Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3524
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz S.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorHamila R.-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T15:00:42Z-
dc.date.available2023-06-16T15:00:42Z-
dc.date.issued2015-
dc.identifier.isbn9.78142E+12-
dc.identifier.issn1557-170X-
dc.identifier.urihttps://doi.org/10.1109/EMBC.2015.7318926-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3524-
dc.description37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 -- 25 August 2015 through 29 August 2015 -- 116805en_US
dc.description.abstractWe propose a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system using an adaptive implementation of 1D Convolutional Neural Networks (CNNs) that can fuse feature extraction and classification into a unified learner. In this way, a dedicated CNN will be trained for each patient by using relatively small common and patient-specific training data and thus it can also be used to classify long ECG records such as Holter registers in a fast and accurate manner. Alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. The experimental results demonstrate that the proposed system achieves a superior classification performance for the detection of ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB). © 2015 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBSen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectalgorithmen_US
dc.subjectartificial neural networken_US
dc.subjectelectrocardiographyen_US
dc.subjectheart ventricle extrasystoleen_US
dc.subjecthumanen_US
dc.subjectpathophysiologyen_US
dc.subjectphysiologic monitoringen_US
dc.subjectsupraventricular premature beaten_US
dc.subjectAlgorithmsen_US
dc.subjectAtrial Premature Complexesen_US
dc.subjectElectrocardiographyen_US
dc.subjectHumansen_US
dc.subjectMonitoring, Physiologicen_US
dc.subjectNeural Networks (Computer)en_US
dc.subjectVentricular Premature Complexesen_US
dc.titleConvolutional Neural Networks for patient-specific ECG classificationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/EMBC.2015.7318926-
dc.identifier.pmid26736826en_US
dc.identifier.scopus2-s2.0-84953295695en_US
dc.authorscopusid7801632948-
dc.authorscopusid6603562710-
dc.authorscopusid7005332419-
dc.identifier.volume2015-Novemberen_US
dc.identifier.startpage2608en_US
dc.identifier.endpage2611en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2616.pdf
  Restricted Access
790.3 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

243
checked on Nov 20, 2024

Page view(s)

244
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.