Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3635
Title: | Individual-based Estimation of Valence with EEG | Other Titles: | EEG ile Kisi-Temelli Negatif Duygulanim Kestirimi | Authors: | Cebeci B. Akan A. Demiralp T. Erbey M. |
Keywords: | EEG emotion film negative valence Beamforming Biomedical engineering Independent component analysis Multilayer neural networks Multilayers Nearest neighbor search Cross validation EEG recording Emotional valences Individual-based K-nearest neighborhoods Multi-layer perceptron classifiers Spatial filters Spectrograms Classification (of information) |
Publisher: | Institute of Electrical and Electronics Engineers Inc. | Abstract: | In this study, it is determined individual-based features which are used to estimate emotional negative valence and compared the features effectiveness with different classifiers. Ten movie clips are shown to subjects as an emotional stimuli and EEG recording is recorded synchronously. Emotional valence value is scored in [-7 7] Likert scale by the subjects immediately after video ended. According to lowest and highest valence values, two classes are generated. The data is processed on an individual basis and personal spatial filters is obtained by Independent Component Analysis. After calculating the spectrogram of the spatial filtered data, features are extracted by subtracting amplitudes of 3Hz averaged frequency bands. The result of feature selection, it is observed that features from beta and gamma bands are much more effective. The success rate of the selected features was tested with five classifiers by cross validation, and high performance was obtained from multilayer perceptron classifiers and the instance- based k-nearest neighborhood algorithm (IBk-NN). The average accuracies of IBk-NN and multilayer classifier are achieved 86% ±8 and 83% ±9, respectively. © 2020 IEEE. | Description: | 2020 Medical Technologies Congress, TIPTEKNO 2020 -- 19 November 2020 through 20 November 2020 -- 166140 | URI: | https://doi.org/10.1109/TIPTEKNO50054.2020.9299244 https://hdl.handle.net/20.500.14365/3635 |
ISBN: | 9.78173E+12 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2721.pdf Restricted Access | 474.8 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 20, 2024
Page view(s)
66
checked on Nov 18, 2024
Download(s)
4
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.