Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3671
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWilkins Z.-
dc.contributor.authorZincir I.-
dc.contributor.authorZincir-Heywood N.-
dc.date.accessioned2023-06-16T15:01:55Z-
dc.date.available2023-06-16T15:01:55Z-
dc.date.issued2020-
dc.identifier.isbn9.78145E+12-
dc.identifier.urihttps://doi.org/10.1145/3377929.3398090-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3671-
dc.descriptionACM SIGEVOen_US
dc.description2020 Genetic and Evolutionary Computation Conference, GECCO 2020 -- 8 July 2020 through 12 July 2020 -- 161684en_US
dc.description.abstractThe Android platform commands a dramatic majority of the mobile market, and this popularity makes it an appealing target for malicious actors. Android malware is especially dangerous because of the versatility in distribution and acquisition of software on the platform. In this paper, we continue to investigate evolutionary Android malware detection systems, implementing new features in an artificial arms race, and comparing different systems' performances on three new datasets. Our evaluations show that the artificial arms race based system achieves the overall best performance on these very challenging datasets. © 2020 ACM.en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada, NSERCen_US
dc.description.sponsorshipThis research is supported partly by the Natural Science and Engineering Research Council of Canada (NSERC). This research is conducted as part of the Dalhousie NIMS Lab at: https://projects.cs. dal.ca/projectx/.en_US
dc.language.isoenen_US
dc.publisherAssociation for Computing Machinery, Incen_US
dc.relation.ispartofGECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companionen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAndroiden_US
dc.subjectCyber attacken_US
dc.subjectCyber securityen_US
dc.subjectEvolutionen_US
dc.subjectMachine learningen_US
dc.subjectMalwareen_US
dc.subjectMobile securityen_US
dc.subjectSmartphoneen_US
dc.subjectAndroid (operating system)en_US
dc.subjectArtificial limbsen_US
dc.subjectMalwareen_US
dc.subjectAndroid malwareen_US
dc.subjectAndroid platformsen_US
dc.subjectArtificial armsen_US
dc.subjectMalware detectionen_US
dc.subjectMobile marketsen_US
dc.subjectMobile securityen_US
dc.titleExploring an artificial arms race for malware detectionen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1145/3377929.3398090-
dc.identifier.scopus2-s2.0-85089735660en_US
dc.authorscopusid57210419816-
dc.authorscopusid57105333100-
dc.identifier.startpage1537en_US
dc.identifier.endpage1545en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2758.pdf791.81 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 27, 2024

Page view(s)

70
checked on Nov 25, 2024

Download(s)

18
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.