Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3671
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wilkins Z. | - |
dc.contributor.author | Zincir I. | - |
dc.contributor.author | Zincir-Heywood N. | - |
dc.date.accessioned | 2023-06-16T15:01:55Z | - |
dc.date.available | 2023-06-16T15:01:55Z | - |
dc.date.issued | 2020 | - |
dc.identifier.isbn | 9.78145E+12 | - |
dc.identifier.uri | https://doi.org/10.1145/3377929.3398090 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3671 | - |
dc.description | ACM SIGEVO | en_US |
dc.description | 2020 Genetic and Evolutionary Computation Conference, GECCO 2020 -- 8 July 2020 through 12 July 2020 -- 161684 | en_US |
dc.description.abstract | The Android platform commands a dramatic majority of the mobile market, and this popularity makes it an appealing target for malicious actors. Android malware is especially dangerous because of the versatility in distribution and acquisition of software on the platform. In this paper, we continue to investigate evolutionary Android malware detection systems, implementing new features in an artificial arms race, and comparing different systems' performances on three new datasets. Our evaluations show that the artificial arms race based system achieves the overall best performance on these very challenging datasets. © 2020 ACM. | en_US |
dc.description.sponsorship | Natural Sciences and Engineering Research Council of Canada, NSERC | en_US |
dc.description.sponsorship | This research is supported partly by the Natural Science and Engineering Research Council of Canada (NSERC). This research is conducted as part of the Dalhousie NIMS Lab at: https://projects.cs. dal.ca/projectx/. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Association for Computing Machinery, Inc | en_US |
dc.relation.ispartof | GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Android | en_US |
dc.subject | Cyber attack | en_US |
dc.subject | Cyber security | en_US |
dc.subject | Evolution | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Malware | en_US |
dc.subject | Mobile security | en_US |
dc.subject | Smartphone | en_US |
dc.subject | Android (operating system) | en_US |
dc.subject | Artificial limbs | en_US |
dc.subject | Malware | en_US |
dc.subject | Android malware | en_US |
dc.subject | Android platforms | en_US |
dc.subject | Artificial arms | en_US |
dc.subject | Malware detection | en_US |
dc.subject | Mobile markets | en_US |
dc.subject | Mobile security | en_US |
dc.title | Exploring an artificial arms race for malware detection | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1145/3377929.3398090 | - |
dc.identifier.scopus | 2-s2.0-85089735660 | en_US |
dc.authorscopusid | 57210419816 | - |
dc.authorscopusid | 57105333100 | - |
dc.identifier.startpage | 1537 | en_US |
dc.identifier.endpage | 1545 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
3
checked on Nov 27, 2024
Page view(s)
70
checked on Nov 25, 2024
Download(s)
18
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.