Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4671
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsallis, Constantino-
dc.contributor.authorLima, Henrique Santos-
dc.contributor.authorTırnaklı, Uğur-
dc.contributor.authorEroğlu, Deniz-
dc.date.accessioned2023-06-19T20:56:11Z-
dc.date.available2023-06-19T20:56:11Z-
dc.date.issued2023-
dc.identifier.issn0167-2789-
dc.identifier.issn1872-8022-
dc.identifier.urihttps://doi.org/10.1016/j.physd.2023.133681-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4671-
dc.description.abstractWe numerically study the thermal transport in the classical inertial nearest-neighbor XY ferromagnet in d = 1, 2, 3, the total number of sites being given by N = Ld, where L is the linear size of the system. For the thermal conductance sigma, we obtain sigma(T, L)L delta(d)= A(d) e-B(d) [L gamma (d)T ]eta(d) (with ez q(d) q equivalent to [1+(1-q)z]1/(1-q); ez1 = ez; A(d) > 0; B(d) > 0; q(d) > 1; eta(d) > 2; delta >= 0; gamma(d) > 0), for all values of L gamma(d)T for d = 1, 2, 3. In the L -> infinity limit, we have sigma proportional to 1/L rho sigma(d) with rho sigma(d) = delta(d)+gamma(d)eta(d)/[q(d)-1]. The material conductivity is given by kappa = sigma Ld proportional to 1/L rho kappa(d) (L -> infinity) with rho kappa(d) = rho sigma(d) - d. Our numerical results are consistent with 'conspiratory' d-dependences of (q, eta, delta, gamma), which comply with normal thermal conductivity (Fourier law) for all dimensions.(c) 2023 Published by Elsevier B.V.en_US
dc.description.sponsorshipCNPq (Brazilian agency); Faperj (Brazilian agency); BAGEP Award of the Science Academy, Turkeyen_US
dc.description.sponsorshipWe acknowledge fruitful remarks by G. Benedek, E.P. Borges and S. Miret Artes, as well as partial financial support from CNPq and Faperj (Brazilian agencies) . The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources) . U.T. is a member of the Science Academy, Bilim Akademisi, Turkey. D.E. was supported by the BAGEP Award of the Science Academy, Turkey.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofPhysica D-Nonlinear Phenomenaen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNonextensive statistical mechanicsen_US
dc.subjectLangevin dynamicsen_US
dc.subjectLinear transport phenomenaen_US
dc.subjectIrreversibilityen_US
dc.subjectConductionen_US
dc.titleFirst-Principle Validation of Fourier's Law in D=1, 2, 3 Classical Systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.physd.2023.133681-
dc.identifier.scopus2-s2.0-85147730951-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.identifier.volume446en_US
dc.identifier.wosWOS:000995633300001-
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
crisitem.author.dept02.03. Physics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
3699.pdf578.81 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.