Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4794
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarabiber Cura, Ozlem-
dc.contributor.authorAkan, Aydın-
dc.contributor.authorTüre, Hatice Sabiha-
dc.date.accessioned2023-09-11T17:53:41Z-
dc.date.available2023-09-11T17:53:41Z-
dc.date.issued2023-
dc.identifier.issn0129-0657-
dc.identifier.issn1793-6462-
dc.identifier.urihttps://doi.org/10.1142/S0129065723500454-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4794-
dc.descriptionArticle; Early Accessen-US
dc.description.abstractThe majority of psychogenic nonepileptic seizures (PNESs) are brought on by psychogenic causes, but because their symptoms resemble those of epilepsy, they are frequently misdiagnosed. Although EEG signals are normal in PNES cases, electroencephalography (EEG) recordings alone are not sufficient to identify the illness. Hence, accurate diagnosis and effective treatment depend on long-term video EEG data and a complete patient history. Video EEG setup, however, is more expensive than using standard EEG equipment. To distinguish PNES signals from conventional epileptic seizure (ES) signals, it is crucial to develop methods solely based on EEG recordings. The proposed study presents a technique utilizing short-term EEG data for the classification of inter-PNES, PNES, and ES segments using time-frequency methods such as the Continuous Wavelet transform (CWT), Short-Time Fourier transform (STFT), CWT-based synchrosqueezed transform (WSST), and STFT-based SST (FSST), which provide high-resolution time-frequency representations (TFRs). TFRs of EEG segments are utilized to generate 13 joint TF (J-TF)-based features, four gray-level co-occurrence matrix (GLCM)-based features, and 16 higher-order joint TF moment (HOJ-Mom)-based features. These features are then employed in the classification procedure. Both three-class (inter-PNES versus PNES versus ES: ACC: 80.9%, SEN: 81.8%, and PRE: 84.7%) and two-class (Inter-PNES versus PNES: ACC: 88.2%, SEN: 87.2%, and PRE: 86.1%; PNES versus ES: ACC: 98.5%, SEN: 99.3%, and PRE: 98.9%) classification algorithms performed well, according to the experimental results. The STFT and FSST strategies surpass the CWT and WSST strategies in terms of classification accuracy, sensitivity, and precision. Moreover, the J-TF-based feature sets often perform better than the other two.en_US
dc.description.sponsorshipIzmir Katip Celebi University Scientific Research Projects Coordination Unit [2019-GAP-MUEMF-0003, 2019-TDR-FEBE-000]en_US
dc.description.sponsorshipThis paper was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit: Project Nos. 2019-GAP-MUEMF-0003 and 2019-TDR-FEBE-0005.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofInternational Journal of Neural Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPsychogenic nonepileptic seizuresen_US
dc.subjectepileptic seizuresen_US
dc.subjectsynchrosqueezed transformen_US
dc.subjectEEGen_US
dc.subjecttime-frequency featuresen_US
dc.subjecttime-frequency analysisen_US
dc.subjectMOVEMENTSen_US
dc.titleClassification of Epileptic and Psychogenic Nonepileptic Seizures via Time-Frequency Features of EEG Dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0129065723500454-
dc.identifier.pmid37530675en_US
dc.identifier.scopus2-s2.0-85168975464en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.identifier.wosWOS:001041534300001en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 20, 2024

Page view(s)

96
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.